Sparse Non-Linear Vector Autoregressive Networks for Multivariate Time Series Anomaly Detection

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammed Ayalew Belay;Adil Rasheed;Pierluigi Salvo Rossi
{"title":"Sparse Non-Linear Vector Autoregressive Networks for Multivariate Time Series Anomaly Detection","authors":"Mohammed Ayalew Belay;Adil Rasheed;Pierluigi Salvo Rossi","doi":"10.1109/LSP.2024.3520019","DOIUrl":null,"url":null,"abstract":"Anomaly detection in multivariate time series (MTS) is crucial in domains such as industrial monitoring, cybersecurity, healthcare, and autonomous driving. Deep learning approaches have improved anomaly detection but lack interpretability. We propose an explainable anomaly detection (XAD) framework using a sparse non-linear vector autoregressive network (SNL-VAR-Net). This framework combines neural networks with vector autoregression for non-linear representation learning and interpretable models. We employ regularization to enforce sparsity, enabling efficient handling of long-range dependencies. Additionally, augmented Lagrange multiplier-based techniques for low-rank and sparse decomposition reduce the impact of noise. Evaluation on publicly available datasets shows that SNL-VAR-Net offers comparable performance to deep learning methods with better interpretability.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"331-335"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806816/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection in multivariate time series (MTS) is crucial in domains such as industrial monitoring, cybersecurity, healthcare, and autonomous driving. Deep learning approaches have improved anomaly detection but lack interpretability. We propose an explainable anomaly detection (XAD) framework using a sparse non-linear vector autoregressive network (SNL-VAR-Net). This framework combines neural networks with vector autoregression for non-linear representation learning and interpretable models. We employ regularization to enforce sparsity, enabling efficient handling of long-range dependencies. Additionally, augmented Lagrange multiplier-based techniques for low-rank and sparse decomposition reduce the impact of noise. Evaluation on publicly available datasets shows that SNL-VAR-Net offers comparable performance to deep learning methods with better interpretability.
稀疏非线性向量自回归网络用于多元时间序列异常检测
多变量时间序列(MTS)异常检测在工业监控、网络安全、医疗保健和自动驾驶等领域至关重要。深度学习方法改进了异常检测,但缺乏可解释性。我们提出了一个使用稀疏非线性向量自回归网络(SNL-VAR-Net)的可解释异常检测(XAD)框架。该框架将神经网络与用于非线性表示学习和可解释模型的向量自回归相结合。我们使用正则化来加强稀疏性,从而能够有效地处理远程依赖关系。此外,基于增强拉格朗日乘法器的低秩和稀疏分解技术减少了噪声的影响。对公开可用数据集的评估表明,SNL-VAR-Net提供了与深度学习方法相当的性能,具有更好的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信