Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Thomas de Jong;Mircea Lazar
{"title":"Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems","authors":"Thomas de Jong;Mircea Lazar","doi":"10.1109/LCSYS.2024.3517458","DOIUrl":null,"url":null,"abstract":"This letter presents a kernelized offset-free data-driven predictive control scheme for nonlinear systems. Traditional model-based and data-driven predictive controllers often struggle with inaccurate predictors or persistent disturbances, especially in the case of nonlinear dynamics, leading to tracking offsets and stability issues. To overcome these limitations, we employ kernel methods to parameterize the nonlinear terms of a velocity model, preserving its structure and efficiently learning unknown parameters through a least squares approach. This results in a offset-free data-driven predictive control scheme formulated as a nonlinear program, but solvable via sequential quadratic programming. We provide a framework for analyzing recursive feasibility and stability of the developed method and we demonstrate its effectiveness through simulations on a nonlinear benchmark example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2877-2882"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10798572/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a kernelized offset-free data-driven predictive control scheme for nonlinear systems. Traditional model-based and data-driven predictive controllers often struggle with inaccurate predictors or persistent disturbances, especially in the case of nonlinear dynamics, leading to tracking offsets and stability issues. To overcome these limitations, we employ kernel methods to parameterize the nonlinear terms of a velocity model, preserving its structure and efficiently learning unknown parameters through a least squares approach. This results in a offset-free data-driven predictive control scheme formulated as a nonlinear program, but solvable via sequential quadratic programming. We provide a framework for analyzing recursive feasibility and stability of the developed method and we demonstrate its effectiveness through simulations on a nonlinear benchmark example.
非线性系统的无偏移核数据驱动预测控制
本文提出了一种非线性系统的无偏移核数据驱动预测控制方案。传统的基于模型和数据驱动的预测控制器经常与不准确的预测器或持续的干扰作斗争,特别是在非线性动力学的情况下,导致跟踪偏移和稳定性问题。为了克服这些限制,我们采用核方法来参数化速度模型的非线性项,保留其结构,并通过最小二乘法有效地学习未知参数。这导致了一个无偏移数据驱动的预测控制方案作为一个非线性程序,但可通过顺序二次规划解决。为分析所开发方法的递归可行性和稳定性提供了一个框架,并通过一个非线性基准算例的仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信