Symplectic Self-Orthogonal Quasi-Cyclic Codes

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chaofeng Guan;Ruihu Li;Jingjie Lv;Zhi Ma
{"title":"Symplectic Self-Orthogonal Quasi-Cyclic Codes","authors":"Chaofeng Guan;Ruihu Li;Jingjie Lv;Zhi Ma","doi":"10.1109/TIT.2024.3497008","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the necessary and sufficient conditions for quasi-cyclic (QC) codes with index even to be symplectic self-orthogonal. Subsequently, we present the lower and upper bounds on the minimum symplectic distances of a class of 1-generator QC codes and their symplectic dual codes by decomposing code spaces. As an application, we construct many new binary symplectic self-orthogonal QC codes with excellent parameters, leading to 117 record-breaking quantum error-correction codes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"114-124"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752704/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the necessary and sufficient conditions for quasi-cyclic (QC) codes with index even to be symplectic self-orthogonal. Subsequently, we present the lower and upper bounds on the minimum symplectic distances of a class of 1-generator QC codes and their symplectic dual codes by decomposing code spaces. As an application, we construct many new binary symplectic self-orthogonal QC codes with excellent parameters, leading to 117 record-breaking quantum error-correction codes.
辛自正交拟循环码
本文建立了具有偶数索引的拟循环码是辛自正交的充要条件。随后,通过对码空间的分解,给出了一类1-发生器QC码及其辛对偶码的最小辛距离的下界和上界。作为应用,我们构造了许多新的具有优良参数的二元辛自正交QC码,得到了117个破纪录的量子纠错码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信