Thao Hoang-Minh, Nguyen Thi Hai, Do Trung Hieu, Ta Thi Hoai, Bui Van Dong, Luu Viet Dung, Nguyen Thi Hoang Ha
{"title":"Removal of ammonium from water by a KOH-treated bentonite biochar composite","authors":"Thao Hoang-Minh, Nguyen Thi Hai, Do Trung Hieu, Ta Thi Hoai, Bui Van Dong, Luu Viet Dung, Nguyen Thi Hoang Ha","doi":"10.1007/s00396-024-05335-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH<sub>4</sub><sup>+</sup>) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N<sub>2</sub> adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH<sub>4</sub><sup>+</sup> ions. Co-existing cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) significantly reduced the removal efficiency of NH<sub>4</sub><sup>+</sup> ions. The Langmuir adsorption capacity of BRK for NH<sub>4</sub><sup>+</sup> followed the order: 22.51 mg/g (10 °C) > 20.57 mg/g (30 °C) > 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH<sub>4</sub><sup>+</sup> was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH<sub>4</sub><sup>+</sup> by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH<sub>4</sub><sup>+</sup> from water. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"81 - 94"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00396-024-05335-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05335-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel adsorbent—KOH-treated bentonite biochar composite (BRK) derived from natural bentonite and rice husk—was successfully synthesized to remove ammonium (NH4+) from water. Adsorbent preparation involved pyrolysis at 400 °C followed by activation of biochar with KOH to produce BRK. Various techniques were applied to characterize the investigated adsorbent, including Fourier-transform infrared spectroscopy (FTIR), N2 adsorption analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) integrated with energy-dispersive X-ray (EDX) spectroscopy. Batch experiments were conducted for elucidating the factors influencing the adsorption process, including pH, contact time, temperature, initial ammonium concentration, and the presence of co-existing cations in the solution. The results showed that the pH of the solution strongly affected BRK’s adsorption capacity for NH4+ ions. Co-existing cations (Na+, K+, Ca2+, and Mg2+) significantly reduced the removal efficiency of NH4+ ions. The Langmuir adsorption capacity of BRK for NH4+ followed the order: 22.51 mg/g (10 °C) > 20.57 mg/g (30 °C) > 16.22 mg/g (50 °C). The negative standard enthalpy change (∆H°) obtained in thermodynamic study suggested that the adsorption process of NH4+ was exothermic. The kinetic experiments demonstrated that adsorption equilibrium was achieved after 30 min of contact. Ion exchange was found to be the main adsorption mechanism for removing NH4+ by BRK. This study proved that BRK is a low-cost and sustainable adsorbent derived from natural bentonite and rice husk and is advantageous for removing NH4+ from water.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.