Thermal memory and moving linear thermal shocks on heat transfer within biological tissues: an Atangana Baleneau fractional integral

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Usman Afzal, Nehad Ali Shah,  Zeeshan, Jae Dong Chung
{"title":"Thermal memory and moving linear thermal shocks on heat transfer within biological tissues: an Atangana Baleneau fractional integral","authors":"Usman Afzal,&nbsp;Nehad Ali Shah,&nbsp; Zeeshan,&nbsp;Jae Dong Chung","doi":"10.1007/s10973-024-13795-0","DOIUrl":null,"url":null,"abstract":"<div><p>Bioheat transfer is pivotal in a range of medical and daily applications, contributing to health and well-being. In hyperthermia treatment, it facilitates the elevation of temperatures in malignant tissues, thereby increasing their sensitivity to interventions such as radiation and chemotherapy, as well as in wearable monitoring devices, rehabilitation methods like heating pads and wraps, and electric blankets. This paper investigates the effects of thermal memory and dynamic linear thermal shocks on heat transfer within biological tissues. The research utilizes an advanced form of the Pennes equation for this analysis. The mathematical framework is based on an innovative time fractional generalized Fourier’s law, which can clarify particular aspects of atypical thermal diffusion phenomena. In the model being analyzed, the temperature gradient and its historical context influence the thermal flux. Additionally, at a specific location within the tissue, the thermal source induces a linear thermal shock at every instant. For both graphical and numerical simulations, Mathcad is employed to assess how the thermal memory parameter influences heat transfer.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15339 - 15351"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13795-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioheat transfer is pivotal in a range of medical and daily applications, contributing to health and well-being. In hyperthermia treatment, it facilitates the elevation of temperatures in malignant tissues, thereby increasing their sensitivity to interventions such as radiation and chemotherapy, as well as in wearable monitoring devices, rehabilitation methods like heating pads and wraps, and electric blankets. This paper investigates the effects of thermal memory and dynamic linear thermal shocks on heat transfer within biological tissues. The research utilizes an advanced form of the Pennes equation for this analysis. The mathematical framework is based on an innovative time fractional generalized Fourier’s law, which can clarify particular aspects of atypical thermal diffusion phenomena. In the model being analyzed, the temperature gradient and its historical context influence the thermal flux. Additionally, at a specific location within the tissue, the thermal source induces a linear thermal shock at every instant. For both graphical and numerical simulations, Mathcad is employed to assess how the thermal memory parameter influences heat transfer.

生物组织内热传递的热记忆和移动线性热冲击:Atangana Baleneau分数积分
生物热传递在一系列医疗和日常应用中至关重要,有助于健康和福祉。在热疗治疗中,它有助于提高恶性组织的温度,从而增加它们对放疗和化疗等干预措施的敏感性,以及可穿戴式监测设备、加热垫和包裹等康复方法和电热毯。本文研究了热记忆和动态线性热冲击对生物组织内传热的影响。这项研究利用了Pennes方程的一种高级形式来进行分析。数学框架是基于一个创新的时间分数广义傅立叶定律,它可以澄清非典型热扩散现象的特定方面。在所分析的模型中,温度梯度及其历史背景影响热通量。此外,在组织内的特定位置,热源在每个瞬间都会引起线性热冲击。对于图形和数值模拟,Mathcad被用来评估热记忆参数如何影响传热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信