Aveek Gupta, Ravinder Kumar, Jeet Prakash Sharma, Mohammad H. Ahmadi, Jan Najser, Vojtech Blazek, Lukas Prokop
{"title":"The role of catalyst in hydrogen production: a critical review","authors":"Aveek Gupta, Ravinder Kumar, Jeet Prakash Sharma, Mohammad H. Ahmadi, Jan Najser, Vojtech Blazek, Lukas Prokop","doi":"10.1007/s10973-024-13753-w","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for hydrogen as an energy carrier requires the development of efficient and sustainable production strategies. Methane reforming is a widely used method for hydrogen production, and catalysts play a crucial role in optimizing this process. This paper provides a comprehensive review of the catalytic aspects of methane reforming, highlighting significant progress and recent advancements. After reviewing various research works, it was seen that the conversion of methane and carbon dioxide is influenced by the specific surface area of catalysts. It is observed that the catalysts with larger surface areas exhibit higher methane conversion rates, although exceptions are observed in the case of perovskites, which demonstrate good conversion efficiency despite their smaller size. Cobalt (Co) and nickel (Ni) are commonly employed in catalysts for achieving higher conversion rates. Other than that, various rare-earth catalysts were also evaluated in the paper. To further optimize the production strategy, several crucial points are identified. These include a comprehensive understanding of the reaction mechanisms for catalyst design, the integration of in situ characterization techniques for studying catalyst changes and active species, collaboration between theoretical calculations and experimental studies, and the development of highly efficient and stable catalysts. Emphasis is placed on exploring cost-effective options, such as nickel and other non-noble metal catalysts, while assessing their performance at low temperatures and in advanced reforming systems. With the increasing importance of hydrogen and syngas production, upgraded reforming systems are expected to flourish soon.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14517 - 14534"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13753-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for hydrogen as an energy carrier requires the development of efficient and sustainable production strategies. Methane reforming is a widely used method for hydrogen production, and catalysts play a crucial role in optimizing this process. This paper provides a comprehensive review of the catalytic aspects of methane reforming, highlighting significant progress and recent advancements. After reviewing various research works, it was seen that the conversion of methane and carbon dioxide is influenced by the specific surface area of catalysts. It is observed that the catalysts with larger surface areas exhibit higher methane conversion rates, although exceptions are observed in the case of perovskites, which demonstrate good conversion efficiency despite their smaller size. Cobalt (Co) and nickel (Ni) are commonly employed in catalysts for achieving higher conversion rates. Other than that, various rare-earth catalysts were also evaluated in the paper. To further optimize the production strategy, several crucial points are identified. These include a comprehensive understanding of the reaction mechanisms for catalyst design, the integration of in situ characterization techniques for studying catalyst changes and active species, collaboration between theoretical calculations and experimental studies, and the development of highly efficient and stable catalysts. Emphasis is placed on exploring cost-effective options, such as nickel and other non-noble metal catalysts, while assessing their performance at low temperatures and in advanced reforming systems. With the increasing importance of hydrogen and syngas production, upgraded reforming systems are expected to flourish soon.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.