André Soledade, Antônio José da Silva Neto, Davidson Martins Moreira
{"title":"Hybrid Approach for the Time-Dependent Fractional Advection–Diffusion Equation Using Conformable Derivatives","authors":"André Soledade, Antônio José da Silva Neto, Davidson Martins Moreira","doi":"10.1007/s00024-024-03580-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, several applications in engineering and science are considering fractional partial differential equations. However, this type of equation presents new challenges to obtaining analytical solutions, since most existing techniques have been developed for integer order differential equations. In this sense, this work aims to investigate the potential of fractional derivatives in the mathematical modeling of the dispersion of atmospheric pollutants by obtaining a semi-analytical solution of the time-dependent fractional, two-dimensional advection–diffusion equation. To reach this goal, the GILTT (Generalized Integral Laplace Transform Technique) and conformal derivative methods were combined, taking fractional parameters in the transient and longitudinal advective terms. This procedure allows the anomalous behavior in the dispersion process to be considered, resulting in a new methodology called α-GILTT. A statistical comparison between the traditional Copenhagen experiment dataset (moderately unstable) with the simulations from the model showed little influence on the fractional parameters under lower fractionality conditions. However, the sensitivity tests with the fractional parameters allow us to conclude that they effectively influence the dispersion of pollutants in the atmosphere, suggesting dependence on atmospheric stability.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 11","pages":"3279 - 3297"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03580-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, several applications in engineering and science are considering fractional partial differential equations. However, this type of equation presents new challenges to obtaining analytical solutions, since most existing techniques have been developed for integer order differential equations. In this sense, this work aims to investigate the potential of fractional derivatives in the mathematical modeling of the dispersion of atmospheric pollutants by obtaining a semi-analytical solution of the time-dependent fractional, two-dimensional advection–diffusion equation. To reach this goal, the GILTT (Generalized Integral Laplace Transform Technique) and conformal derivative methods were combined, taking fractional parameters in the transient and longitudinal advective terms. This procedure allows the anomalous behavior in the dispersion process to be considered, resulting in a new methodology called α-GILTT. A statistical comparison between the traditional Copenhagen experiment dataset (moderately unstable) with the simulations from the model showed little influence on the fractional parameters under lower fractionality conditions. However, the sensitivity tests with the fractional parameters allow us to conclude that they effectively influence the dispersion of pollutants in the atmosphere, suggesting dependence on atmospheric stability.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.