S. R. Mishra, Rupa Baithalu, Surender Ontela, Subhajit Panda
{"title":"Study of velocity slip impact combined with dissipative heat on the Williamson hybrid nanofluids with the Cattaneo–Christov heat flux framework","authors":"S. R. Mishra, Rupa Baithalu, Surender Ontela, Subhajit Panda","doi":"10.1007/s10973-024-13769-2","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation of velocity slip combined with the dissipative heat corresponds to the non-Newtonian Williamson hybrid nanofluids utilizing the “Cattaneo-Christov heat flux model” is crucial in advanced applications in several sectors. The proposed analysis focuses on the hybrid nanofluid comprised of magnesium oxide (MgO) and zirconium dioxide (ZrO<sub>2</sub>) in water which boosts the thermal conductivity along with the performance of the fluid. The magnetized Williamson fluid is a particular type of non-Newtonian fluid that exhibits essential applications to biomedical engineering. The insertion of magnetization along with porosity suggests considering the dissipative heat impact associated with Joule and Darcy which energies the heat transport phenomena. The limitation of classical Fourier laws is addressed by the consideration of the Cattaneo–Christov heat flux framework along with the thermal radiation. The designed flow model with dimensional terms is transformed into a corresponding non-dimensional form by implementing similarity functions. Further, these transmuted equations are solved numerically via the shooting-based Runge–Kutta technique. The parametric analysis of the flow phenomena is obtained and arranged graphically. The validation with earlier investigation displays a valid association in particular scenarios. The main outcomes reveal that the resistivity characteristics produced by the interplay between permeability and magnetization regulate fluid velocity, especially when combined with the non-Newtonian Williamson parameter. Furthermore, in both nanofluid and hybrid nanofluid scenarios, the fluid temperature is greatly raised by the effects of thermal radiation and the Eckert number.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15305 - 15322"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10973-024-13769-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13769-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of velocity slip combined with the dissipative heat corresponds to the non-Newtonian Williamson hybrid nanofluids utilizing the “Cattaneo-Christov heat flux model” is crucial in advanced applications in several sectors. The proposed analysis focuses on the hybrid nanofluid comprised of magnesium oxide (MgO) and zirconium dioxide (ZrO2) in water which boosts the thermal conductivity along with the performance of the fluid. The magnetized Williamson fluid is a particular type of non-Newtonian fluid that exhibits essential applications to biomedical engineering. The insertion of magnetization along with porosity suggests considering the dissipative heat impact associated with Joule and Darcy which energies the heat transport phenomena. The limitation of classical Fourier laws is addressed by the consideration of the Cattaneo–Christov heat flux framework along with the thermal radiation. The designed flow model with dimensional terms is transformed into a corresponding non-dimensional form by implementing similarity functions. Further, these transmuted equations are solved numerically via the shooting-based Runge–Kutta technique. The parametric analysis of the flow phenomena is obtained and arranged graphically. The validation with earlier investigation displays a valid association in particular scenarios. The main outcomes reveal that the resistivity characteristics produced by the interplay between permeability and magnetization regulate fluid velocity, especially when combined with the non-Newtonian Williamson parameter. Furthermore, in both nanofluid and hybrid nanofluid scenarios, the fluid temperature is greatly raised by the effects of thermal radiation and the Eckert number.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.