{"title":"Experimental study on unsteady flow of hydraulic conveying of a single coarse particle through a 90° bend","authors":"Hui Cheng \n (, ), Hong Xiong \n (, ), Yuxiang Chen \n (, ), Hong Zhu \n (, ), Chunliang Yu \n (, ), Guodong Zheng \n (, ), Yiyang Xing \n (, )","doi":"10.1007/s10409-024-24339-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bends contribute to a flexible layout of pipeline system, but also lead to intensive energy costs due to the complex flow characteristic. This experimental study is conducted to investigate the impact of a single coarse particle on the flow field in a bend. The velocity profiles of fluid on the axial symmetry plane of the bend are measured using time-resolved particle image velocimetry. The flow structures are extracted using the proper orthogonal decomposition method. The results reveal that there is a shear-layer flow in the bend during the transportation. With the increase in particle size, the particle has a dominant influence on the flow energy distribution of the overall flow. The impact of particles on the first few energetic flows is mainly in the latter part of the transportation, both temporally and spatially. As the particle size decreases, the most energetic unsteady flow within the bend changes from the convective flow to the flow of the shear layer.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24339-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bends contribute to a flexible layout of pipeline system, but also lead to intensive energy costs due to the complex flow characteristic. This experimental study is conducted to investigate the impact of a single coarse particle on the flow field in a bend. The velocity profiles of fluid on the axial symmetry plane of the bend are measured using time-resolved particle image velocimetry. The flow structures are extracted using the proper orthogonal decomposition method. The results reveal that there is a shear-layer flow in the bend during the transportation. With the increase in particle size, the particle has a dominant influence on the flow energy distribution of the overall flow. The impact of particles on the first few energetic flows is mainly in the latter part of the transportation, both temporally and spatially. As the particle size decreases, the most energetic unsteady flow within the bend changes from the convective flow to the flow of the shear layer.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics