Jun Wang, Xiyun Feng, Wei Li, Yanqiong Wu, Jing Shen
{"title":"Investigation of filling amount and particle size on electrical conductivity of silver conductive composite","authors":"Jun Wang, Xiyun Feng, Wei Li, Yanqiong Wu, Jing Shen","doi":"10.1007/s00396-024-05336-w","DOIUrl":null,"url":null,"abstract":"<div><p>Printable conductive composites show potential in wearable electronic, capacitor, stretchable sensors, and conductors. Incorporating metal nanoparticles in composites is a leading method to achieve high performance. In this study, we present a method for preparing silver flakes with ultra-smooth surfaces and excellent electron transfer properties by combining a waterborne acrylic resin template method with an intensive energy ultrasonic technique. By varying the ultrasonic treatment time from 20 to 80 min, the size distribution of the silver flakes was controlled, ranging from 15.7 to 5.04 μm. Scanning electron microscopy results indicate that the intensive energy ultrasonic treatment does not affect the surface morphology of the silver flakes. Additionally, the electron transport difficulties arising from internal defects in silver flakes prepared by traditional methods have been mitigated. The influence of size distribution and filler content on the electrical conductivity of silver conductive composites has been investigated. The study identified a correlation between the particle size distribution of flake silver powder and the volume resistivity of the conductive composite material, wherein a reduction in particle size distribution leads to a corresponding decrease in volume resistivity. Furthermore, an increase in the filler content of the composite material was found to result in a reduction in its volume resistivity. Using flake silver powder with a median particle size (<i>d</i><sub>0.5</sub>) of 5.38 μm as a representative sample, the volume resistivity was observed to increase from 8.50 × 10<sup>−5</sup> Ω·cm to 8.63 × 10<sup>−3</sup> Ω·cm as the silver content was decreased from 25 to 4 wt %. Concurrently, an examination of the conductive properties and the formation of the conductive network demonstrated alignment with the theoretical steady-state model.</p><h3>Graphical Abstract</h3><p>Silver flakes with ultra-smooth surface and excellent electron transfer property is prepared by combining vacuum-evaporated nanofilms method and intensive energy ultrasonic technique.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"119 - 128"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00396-024-05336-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05336-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Printable conductive composites show potential in wearable electronic, capacitor, stretchable sensors, and conductors. Incorporating metal nanoparticles in composites is a leading method to achieve high performance. In this study, we present a method for preparing silver flakes with ultra-smooth surfaces and excellent electron transfer properties by combining a waterborne acrylic resin template method with an intensive energy ultrasonic technique. By varying the ultrasonic treatment time from 20 to 80 min, the size distribution of the silver flakes was controlled, ranging from 15.7 to 5.04 μm. Scanning electron microscopy results indicate that the intensive energy ultrasonic treatment does not affect the surface morphology of the silver flakes. Additionally, the electron transport difficulties arising from internal defects in silver flakes prepared by traditional methods have been mitigated. The influence of size distribution and filler content on the electrical conductivity of silver conductive composites has been investigated. The study identified a correlation between the particle size distribution of flake silver powder and the volume resistivity of the conductive composite material, wherein a reduction in particle size distribution leads to a corresponding decrease in volume resistivity. Furthermore, an increase in the filler content of the composite material was found to result in a reduction in its volume resistivity. Using flake silver powder with a median particle size (d0.5) of 5.38 μm as a representative sample, the volume resistivity was observed to increase from 8.50 × 10−5 Ω·cm to 8.63 × 10−3 Ω·cm as the silver content was decreased from 25 to 4 wt %. Concurrently, an examination of the conductive properties and the formation of the conductive network demonstrated alignment with the theoretical steady-state model.
Graphical Abstract
Silver flakes with ultra-smooth surface and excellent electron transfer property is prepared by combining vacuum-evaporated nanofilms method and intensive energy ultrasonic technique.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.