Investigation of filling amount and particle size on electrical conductivity of silver conductive composite

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Jun Wang, Xiyun Feng, Wei Li, Yanqiong Wu, Jing Shen
{"title":"Investigation of filling amount and particle size on electrical conductivity of silver conductive composite","authors":"Jun Wang,&nbsp;Xiyun Feng,&nbsp;Wei Li,&nbsp;Yanqiong Wu,&nbsp;Jing Shen","doi":"10.1007/s00396-024-05336-w","DOIUrl":null,"url":null,"abstract":"<div><p>Printable conductive composites show potential in wearable electronic, capacitor, stretchable sensors, and conductors. Incorporating metal nanoparticles in composites is a leading method to achieve high performance. In this study, we present a method for preparing silver flakes with ultra-smooth surfaces and excellent electron transfer properties by combining a waterborne acrylic resin template method with an intensive energy ultrasonic technique. By varying the ultrasonic treatment time from 20 to 80 min, the size distribution of the silver flakes was controlled, ranging from 15.7 to 5.04 μm. Scanning electron microscopy results indicate that the intensive energy ultrasonic treatment does not affect the surface morphology of the silver flakes. Additionally, the electron transport difficulties arising from internal defects in silver flakes prepared by traditional methods have been mitigated. The influence of size distribution and filler content on the electrical conductivity of silver conductive composites has been investigated. The study identified a correlation between the particle size distribution of flake silver powder and the volume resistivity of the conductive composite material, wherein a reduction in particle size distribution leads to a corresponding decrease in volume resistivity. Furthermore, an increase in the filler content of the composite material was found to result in a reduction in its volume resistivity. Using flake silver powder with a median particle size (<i>d</i><sub>0.5</sub>) of 5.38 μm as a representative sample, the volume resistivity was observed to increase from 8.50 × 10<sup>−5</sup> Ω·cm to 8.63 × 10<sup>−3</sup> Ω·cm as the silver content was decreased from 25 to 4 wt %. Concurrently, an examination of the conductive properties and the formation of the conductive network demonstrated alignment with the theoretical steady-state model.</p><h3>Graphical Abstract</h3><p>Silver flakes with ultra-smooth surface and excellent electron transfer property is prepared by combining vacuum-evaporated nanofilms method and intensive energy ultrasonic technique.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"119 - 128"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00396-024-05336-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05336-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Printable conductive composites show potential in wearable electronic, capacitor, stretchable sensors, and conductors. Incorporating metal nanoparticles in composites is a leading method to achieve high performance. In this study, we present a method for preparing silver flakes with ultra-smooth surfaces and excellent electron transfer properties by combining a waterborne acrylic resin template method with an intensive energy ultrasonic technique. By varying the ultrasonic treatment time from 20 to 80 min, the size distribution of the silver flakes was controlled, ranging from 15.7 to 5.04 μm. Scanning electron microscopy results indicate that the intensive energy ultrasonic treatment does not affect the surface morphology of the silver flakes. Additionally, the electron transport difficulties arising from internal defects in silver flakes prepared by traditional methods have been mitigated. The influence of size distribution and filler content on the electrical conductivity of silver conductive composites has been investigated. The study identified a correlation between the particle size distribution of flake silver powder and the volume resistivity of the conductive composite material, wherein a reduction in particle size distribution leads to a corresponding decrease in volume resistivity. Furthermore, an increase in the filler content of the composite material was found to result in a reduction in its volume resistivity. Using flake silver powder with a median particle size (d0.5) of 5.38 μm as a representative sample, the volume resistivity was observed to increase from 8.50 × 10−5 Ω·cm to 8.63 × 10−3 Ω·cm as the silver content was decreased from 25 to 4 wt %. Concurrently, an examination of the conductive properties and the formation of the conductive network demonstrated alignment with the theoretical steady-state model.

Graphical Abstract

Silver flakes with ultra-smooth surface and excellent electron transfer property is prepared by combining vacuum-evaporated nanofilms method and intensive energy ultrasonic technique.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信