Study of the influence of the composition and pH of the solution on the structure and morphology of particle dispersions of a (bio)polyelectrolyte complex between chitosan and gelatin
Litvinov Mikhail, Kashurin Aleksandr, Podshivalov Aleksandr
{"title":"Study of the influence of the composition and pH of the solution on the structure and morphology of particle dispersions of a (bio)polyelectrolyte complex between chitosan and gelatin","authors":"Litvinov Mikhail, Kashurin Aleksandr, Podshivalov Aleksandr","doi":"10.1007/s00396-024-05325-z","DOIUrl":null,"url":null,"abstract":"<div><p>The work studied the formation and structure of (bio)PEC in mixtures of dilute chitosan and gelatin solutions at different <i>pH</i> and ratios of polymers and their ionized groups of <i>z</i>. Using the turbidimetry method for the chitosan and gelatin mixtures, it was found that stable scattering particles of (bio)PEC are formed in the <i>pH</i> range from 5 to 6.4 and with a polymer ratio above 1:5 (<i>z</i> = 0.29). The electrostatic interaction in the (bio)PEC structures was confirmed by ATR-FTIR spectroscopy. It was shown that during the formation of (bio)PEC in mixtures with <i>pH</i> = 5.5, a strong shift of the corresponding absorption bands relative to the initial polymers is observed. Studying the complexation and structure of these particles using the dynamic light scattering method of mixtures at <i>pH</i> = 3, the associative-dissipative character of the polymers interaction with the formation of soluble and unstable (bio)PEC dispersions was determined. It was observed that in mixtures with a <i>pH</i> = 5.5, the interaction becomes associative, which is accompanied by the formation of a (bio)PEC coacervate microphase at polymer ratios from 1:10 to 1:30 (in the <i>z</i> range from 0.58 to 1.73, respectively). Analysis of the structural properties of the coacervate microphase of (bio)PEC using dynamic light scattering and optical microscopy methods showed that with an increase in the proportion of an oppositely charged component of <i>z</i> ≥ 1, the isotropy of the polyelectrolyte binding process increases, which leads to suppression of the formation of loose heterogeneous coacervate particles of (bio)PEC.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"33 - 49"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05325-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The work studied the formation and structure of (bio)PEC in mixtures of dilute chitosan and gelatin solutions at different pH and ratios of polymers and their ionized groups of z. Using the turbidimetry method for the chitosan and gelatin mixtures, it was found that stable scattering particles of (bio)PEC are formed in the pH range from 5 to 6.4 and with a polymer ratio above 1:5 (z = 0.29). The electrostatic interaction in the (bio)PEC structures was confirmed by ATR-FTIR spectroscopy. It was shown that during the formation of (bio)PEC in mixtures with pH = 5.5, a strong shift of the corresponding absorption bands relative to the initial polymers is observed. Studying the complexation and structure of these particles using the dynamic light scattering method of mixtures at pH = 3, the associative-dissipative character of the polymers interaction with the formation of soluble and unstable (bio)PEC dispersions was determined. It was observed that in mixtures with a pH = 5.5, the interaction becomes associative, which is accompanied by the formation of a (bio)PEC coacervate microphase at polymer ratios from 1:10 to 1:30 (in the z range from 0.58 to 1.73, respectively). Analysis of the structural properties of the coacervate microphase of (bio)PEC using dynamic light scattering and optical microscopy methods showed that with an increase in the proportion of an oppositely charged component of z ≥ 1, the isotropy of the polyelectrolyte binding process increases, which leads to suppression of the formation of loose heterogeneous coacervate particles of (bio)PEC.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.