Study of the influence of the composition and pH of the solution on the structure and morphology of particle dispersions of a (bio)polyelectrolyte complex between chitosan and gelatin

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Litvinov Mikhail, Kashurin Aleksandr, Podshivalov Aleksandr
{"title":"Study of the influence of the composition and pH of the solution on the structure and morphology of particle dispersions of a (bio)polyelectrolyte complex between chitosan and gelatin","authors":"Litvinov Mikhail,&nbsp;Kashurin Aleksandr,&nbsp;Podshivalov Aleksandr","doi":"10.1007/s00396-024-05325-z","DOIUrl":null,"url":null,"abstract":"<div><p>The work studied the formation and structure of (bio)PEC in mixtures of dilute chitosan and gelatin solutions at different <i>pH</i> and ratios of polymers and their ionized groups of <i>z</i>. Using the turbidimetry method for the chitosan and gelatin mixtures, it was found that stable scattering particles of (bio)PEC are formed in the <i>pH</i> range from 5 to 6.4 and with a polymer ratio above 1:5 (<i>z</i> = 0.29). The electrostatic interaction in the (bio)PEC structures was confirmed by ATR-FTIR spectroscopy. It was shown that during the formation of (bio)PEC in mixtures with <i>pH</i> = 5.5, a strong shift of the corresponding absorption bands relative to the initial polymers is observed. Studying the complexation and structure of these particles using the dynamic light scattering method of mixtures at <i>pH</i> = 3, the associative-dissipative character of the polymers interaction with the formation of soluble and unstable (bio)PEC dispersions was determined. It was observed that in mixtures with a <i>pH</i> = 5.5, the interaction becomes associative, which is accompanied by the formation of a (bio)PEC coacervate microphase at polymer ratios from 1:10 to 1:30 (in the <i>z</i> range from 0.58 to 1.73, respectively). Analysis of the structural properties of the coacervate microphase of (bio)PEC using dynamic light scattering and optical microscopy methods showed that with an increase in the proportion of an oppositely charged component of <i>z</i> ≥ 1, the isotropy of the polyelectrolyte binding process increases, which leads to suppression of the formation of loose heterogeneous coacervate particles of (bio)PEC.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"33 - 49"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05325-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The work studied the formation and structure of (bio)PEC in mixtures of dilute chitosan and gelatin solutions at different pH and ratios of polymers and their ionized groups of z. Using the turbidimetry method for the chitosan and gelatin mixtures, it was found that stable scattering particles of (bio)PEC are formed in the pH range from 5 to 6.4 and with a polymer ratio above 1:5 (z = 0.29). The electrostatic interaction in the (bio)PEC structures was confirmed by ATR-FTIR spectroscopy. It was shown that during the formation of (bio)PEC in mixtures with pH = 5.5, a strong shift of the corresponding absorption bands relative to the initial polymers is observed. Studying the complexation and structure of these particles using the dynamic light scattering method of mixtures at pH = 3, the associative-dissipative character of the polymers interaction with the formation of soluble and unstable (bio)PEC dispersions was determined. It was observed that in mixtures with a pH = 5.5, the interaction becomes associative, which is accompanied by the formation of a (bio)PEC coacervate microphase at polymer ratios from 1:10 to 1:30 (in the z range from 0.58 to 1.73, respectively). Analysis of the structural properties of the coacervate microphase of (bio)PEC using dynamic light scattering and optical microscopy methods showed that with an increase in the proportion of an oppositely charged component of z ≥ 1, the isotropy of the polyelectrolyte binding process increases, which leads to suppression of the formation of loose heterogeneous coacervate particles of (bio)PEC.

Graphical Abstract

研究了溶液的组成和pH对壳聚糖-明胶(生物)聚电解质复合物颗粒分散体结构和形态的影响
研究了壳聚糖与明胶在不同pH、不同聚合物与z离子基团比例下的混合溶液中(生物)PEC的形成和结构。用浊度法测定壳聚糖与明胶的混合溶液,发现在pH为5 ~ 6.4、聚合物比大于1:5 (z = 0.29)时,(生物)PEC形成稳定的散射颗粒。通过ATR-FTIR光谱分析,证实了(生物)PEC结构中的静电相互作用。结果表明,在pH = 5.5的混合物中,(生物)PEC的形成过程中,相对于初始聚合物,相应的吸收带发生了强烈的位移。采用pH = 3时的动态光散射方法研究了这些聚合物的络合和结构,确定了聚合物相互作用与可溶性和不稳定(生物)PEC分散体形成的结合耗散特性。在pH = 5.5的混合物中,相互作用变为结合,并伴随着聚合物比为1:10至1:30 (z范围分别为0.58至1.73)时(生物)PEC凝聚微相的形成。利用动态光散射和光学显微镜方法分析(bio)PEC凝聚微相的结构性质表明,随着z≥1的相反电荷组分比例的增加,聚电解质结合过程的各向同性增加,从而抑制了(bio)PEC松散非均质凝聚颗粒的形成。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信