Relationship between TTI and Various Thunderstorm Related Parameters over Kerala, India

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
N. Umakanth, Rupraj Biswasharma, Rajesh Gogineni, P. Vinay Kumar, D. M. Lal, Sachin M. Deshpande, M. C. Rao
{"title":"Relationship between TTI and Various Thunderstorm Related Parameters over Kerala, India","authors":"N. Umakanth,&nbsp;Rupraj Biswasharma,&nbsp;Rajesh Gogineni,&nbsp;P. Vinay Kumar,&nbsp;D. M. Lal,&nbsp;Sachin M. Deshpande,&nbsp;M. C. Rao","doi":"10.1007/s00024-024-03617-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study mainly focuses on the relationship between Total Totals index (TTI) and other thunderstorm related parameters over Kerala region, India. This study has been carried out on thunderstorm days for the pre-monsoon season during the time period 2017–2022. The thunderstorm related parameters such as lightning, K Index (KI), Humidity Index (HI), Total precipitable water (TPW), Rainfall to Lightning Ratio (RLR), Maximum updraft speed (MUS), Lifted Index (LI), Convective available potential energy (CAPE), Dew point depression (DPD), Cloud fraction (CF) and Temperature Difference (TempDiff) have been considered for the analysis. For a better understanding between TTI and thunderstorm indices, two distinct regions D1 (10.8°-12.4° N, 75.2°-76.8° E) and D2 (9.2°-10.8° N, 76.2°-77.8° E) of Kerala state were selected as the study region. The results reveal that D2 region (135 days) showed more lightning activity than D1 region (88 days). A significant positive trend has been seen between TTI and KI parameters. RLR &amp; TPW parameters showed a significant negative trend with TTI parameter. MUS exhibits positive trend whereas LI showed negative trends with TTI on lightning days over both regions. This study also shows that the CAPE and DPD showed an increasing trend with TTI during lightning days. We also utilized Random forest technique to study the relationship between various thunderstorm related parameters.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 11","pages":"3331 - 3350"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03617-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study mainly focuses on the relationship between Total Totals index (TTI) and other thunderstorm related parameters over Kerala region, India. This study has been carried out on thunderstorm days for the pre-monsoon season during the time period 2017–2022. The thunderstorm related parameters such as lightning, K Index (KI), Humidity Index (HI), Total precipitable water (TPW), Rainfall to Lightning Ratio (RLR), Maximum updraft speed (MUS), Lifted Index (LI), Convective available potential energy (CAPE), Dew point depression (DPD), Cloud fraction (CF) and Temperature Difference (TempDiff) have been considered for the analysis. For a better understanding between TTI and thunderstorm indices, two distinct regions D1 (10.8°-12.4° N, 75.2°-76.8° E) and D2 (9.2°-10.8° N, 76.2°-77.8° E) of Kerala state were selected as the study region. The results reveal that D2 region (135 days) showed more lightning activity than D1 region (88 days). A significant positive trend has been seen between TTI and KI parameters. RLR & TPW parameters showed a significant negative trend with TTI parameter. MUS exhibits positive trend whereas LI showed negative trends with TTI on lightning days over both regions. This study also shows that the CAPE and DPD showed an increasing trend with TTI during lightning days. We also utilized Random forest technique to study the relationship between various thunderstorm related parameters.

Abstract Image

印度喀拉拉邦上空TTI与雷暴相关参数的关系
本文主要研究了印度喀拉拉邦地区的Total Totals index (TTI)与其他雷暴相关参数的关系。这项研究是在2017-2022年雨季前的雷暴日进行的。雷电、K指数(KI)、湿度指数(HI)、总可降水量(TPW)、雨雷比(RLR)、最大上升气流速度(MUS)、抬升指数(LI)、对流有效势能(CAPE)、露点降(DPD)、云分数(CF)和温差(TempDiff)等雷暴相关参数进行了分析。为了更好地理解TTI和雷暴指数之间的关系,选择喀拉拉邦的两个不同区域D1(10.8°-12.4°N, 75.2°-76.8°E)和D2(9.2°-10.8°N, 76.2°-77.8°E)作为研究区域。结果表明:D2区(135 d)比D1区(88 d)闪电活动更频繁;TTI和KI参数之间存在显著的正趋势。RLR,TPW参数与TTI参数呈显著负相关。在两个地区的闪电日,MUS与TTI呈正趋势,而LI与TTI呈负趋势。在雷暴日期间,CAPE和DPD随TTI呈增加趋势。我们还利用随机森林技术研究了雷暴相关参数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信