Sharp Isolated Toughness Bound for Fractional (k, m)-Deleted Graphs

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Wei Gao, Wei-fan Wang, Yao-jun Chen
{"title":"Sharp Isolated Toughness Bound for Fractional (k, m)-Deleted Graphs","authors":"Wei Gao,&nbsp;Wei-fan Wang,&nbsp;Yao-jun Chen","doi":"10.1007/s10255-024-1067-x","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <i>G</i> is a fractional (<i>k, m</i>)-deleted graph if removing any <i>m</i> edges from <i>G</i>, the resulting subgraph still admits a fractional <i>k</i>-factor. Let <i>k</i> ≥ 2 and <i>m</i> ≥ 1 be integers. Denote <span>\\(\\lfloor{2m \\over k}\\rfloor^{\\ast}=\\lfloor{2m \\over k}\\rfloor\\)</span> if <span>\\(2m \\over k\\)</span> is not an integer, and <span>\\(\\lfloor{2m \\over k}\\rfloor^{\\ast}=\\lfloor{2m \\over k}\\rfloor - 1\\)</span> if <span>\\(2m \\over k\\)</span> is an integer. In this paper, we prove that <i>G</i> is a fractional (<i>k, m</i>)-deleted graph if <i>δ</i>(<i>G</i>) ≥ <i>k</i> + <i>m</i> and isolated toughness meets </p><div><div><span>$$I\\left( G \\right) &gt; \\left\\{ {\\matrix{{3 - {1 \\over m},\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,} &amp; {{\\text{if}}\\,k = 2\\,{\\text{and}}\\,m \\ge 3,} \\cr {k + {{{{\\left\\lfloor {{{2m} \\over k}} \\right\\rfloor }^*}} \\over {m + 1 - {{\\left\\lfloor {{{2m} \\over k}} \\right\\rfloor }^*}}},} &amp; {{\\text{otherwise}}.\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,} \\cr } } \\right.$$</span></div></div><p>Furthermore, we show that the isolated toughness bound is tight.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 1","pages":"252 - 269"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1067-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G is a fractional (k, m)-deleted graph if removing any m edges from G, the resulting subgraph still admits a fractional k-factor. Let k ≥ 2 and m ≥ 1 be integers. Denote \(\lfloor{2m \over k}\rfloor^{\ast}=\lfloor{2m \over k}\rfloor\) if \(2m \over k\) is not an integer, and \(\lfloor{2m \over k}\rfloor^{\ast}=\lfloor{2m \over k}\rfloor - 1\) if \(2m \over k\) is an integer. In this paper, we prove that G is a fractional (k, m)-deleted graph if δ(G) ≥ k + m and isolated toughness meets

$$I\left( G \right) > \left\{ {\matrix{{3 - {1 \over m},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {{\text{if}}\,k = 2\,{\text{and}}\,m \ge 3,} \cr {k + {{{{\left\lfloor {{{2m} \over k}} \right\rfloor }^*}} \over {m + 1 - {{\left\lfloor {{{2m} \over k}} \right\rfloor }^*}}},} & {{\text{otherwise}}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \cr } } \right.$$

Furthermore, we show that the isolated toughness bound is tight.

分数(k, m)-删除图的尖锐孤立韧性界
图G是一个分数(k, m)删除的图,如果从G中删除任意m条边,则得到的子图仍然存在分数k因子。设k≥2,m≥1为整数。如果\(2m \over k\)不是整数则表示\(\lfloor{2m \over k}\rfloor^{\ast}=\lfloor{2m \over k}\rfloor\),如果\(2m \over k\)是整数则表示\(\lfloor{2m \over k}\rfloor^{\ast}=\lfloor{2m \over k}\rfloor - 1\)。本文证明了当δ(G)≥k + m且孤立韧性满足$$I\left( G \right) > \left\{ {\matrix{{3 - {1 \over m},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {{\text{if}}\,k = 2\,{\text{and}}\,m \ge 3,} \cr {k + {{{{\left\lfloor {{{2m} \over k}} \right\rfloor }^*}} \over {m + 1 - {{\left\lfloor {{{2m} \over k}} \right\rfloor }^*}}},} & {{\text{otherwise}}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \cr } } \right.$$时,G是分数(k, m)删除图,并证明了孤立韧性界是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信