Cellulose nanofibrils in pervious concrete: improving mechanical properties and durability

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Jingchen Li, Weidong Cao, Ziqi Yan, Zunhao Zhan, Yingjian Li
{"title":"Cellulose nanofibrils in pervious concrete: improving mechanical properties and durability","authors":"Jingchen Li,&nbsp;Weidong Cao,&nbsp;Ziqi Yan,&nbsp;Zunhao Zhan,&nbsp;Yingjian Li","doi":"10.1617/s11527-024-02559-9","DOIUrl":null,"url":null,"abstract":"<div><p>Pervious concrete (PC), commonly used in urban pavement, is known for its high permeability, which contributes to mitigating the urban heat island effect. However, the low strength and durability of PC limit its use. The objective of this study is to improve mechanical properties and durability of PC by adding cellulose nanofibrils (CNFs). The results showed that CNFs significantly enhanced compressive strength, flexural strength, and salt frost resistance, with optimal performance at 0.15% CNF. At this concentration, compressive and flexural strengths increased by 26.5% and 25.8%, respectively, despite a slight reduction of 10.2% in permeability. CNFs also improved resistance to salt-induced freeze–thaw cycles, reducing spalling and maintaining a higher value of the dynamic modulus of elasticity, particularly at 0.1% and 0.15% dosages. Scanning electron microscope (SEM) analyses revealed that CNFs create a denser, more uniform network of hydrated products, enhancing microstructure and interfacial bonding. This study confirms that CNFs can significantly enhance the mechanical properties and durability of PC.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02559-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pervious concrete (PC), commonly used in urban pavement, is known for its high permeability, which contributes to mitigating the urban heat island effect. However, the low strength and durability of PC limit its use. The objective of this study is to improve mechanical properties and durability of PC by adding cellulose nanofibrils (CNFs). The results showed that CNFs significantly enhanced compressive strength, flexural strength, and salt frost resistance, with optimal performance at 0.15% CNF. At this concentration, compressive and flexural strengths increased by 26.5% and 25.8%, respectively, despite a slight reduction of 10.2% in permeability. CNFs also improved resistance to salt-induced freeze–thaw cycles, reducing spalling and maintaining a higher value of the dynamic modulus of elasticity, particularly at 0.1% and 0.15% dosages. Scanning electron microscope (SEM) analyses revealed that CNFs create a denser, more uniform network of hydrated products, enhancing microstructure and interfacial bonding. This study confirms that CNFs can significantly enhance the mechanical properties and durability of PC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信