Least Square Estimation for Multiple Functional Linear Model with Autoregressive Errors

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Meng Wang, Ming-liang Shu, Jian-jun Zhou, Si-xin Wu, Min Chen
{"title":"Least Square Estimation for Multiple Functional Linear Model with Autoregressive Errors","authors":"Meng Wang,&nbsp;Ming-liang Shu,&nbsp;Jian-jun Zhou,&nbsp;Si-xin Wu,&nbsp;Min Chen","doi":"10.1007/s10255-024-1143-2","DOIUrl":null,"url":null,"abstract":"<div><p>As an extension of linear regression in functional data analysis, functional linear regression has been studied by many researchers and applied in various fields. However, in many cases, data is collected sequentially over time, for example the financial series, so it is necessary to consider the autocorrelated structure of errors in functional regression background. To this end, this paper considers a multiple functional linear model with autoregressive errors. Based on the functional principal component analysis, we apply the least square procedure to estimate the functional coefficients and autoregression coefficients. Under some regular conditions, we establish the asymptotic properties of the proposed estimators. A simulation study is conducted to investigate the finite sample performance of our estimators. A real example on China’s weather data is applied to illustrate the validity of our model.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 1","pages":"84 - 98"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1143-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

As an extension of linear regression in functional data analysis, functional linear regression has been studied by many researchers and applied in various fields. However, in many cases, data is collected sequentially over time, for example the financial series, so it is necessary to consider the autocorrelated structure of errors in functional regression background. To this end, this paper considers a multiple functional linear model with autoregressive errors. Based on the functional principal component analysis, we apply the least square procedure to estimate the functional coefficients and autoregression coefficients. Under some regular conditions, we establish the asymptotic properties of the proposed estimators. A simulation study is conducted to investigate the finite sample performance of our estimators. A real example on China’s weather data is applied to illustrate the validity of our model.

具有自回归误差的多函数线性模型的最小二乘估计
作为线性回归在泛函数据分析中的延伸,泛函线性回归得到了许多研究者的研究,并应用于各个领域。然而,在许多情况下,数据是随时间顺序收集的,例如金融序列,因此有必要考虑函数回归背景中误差的自相关结构。为此,本文考虑了一个具有自回归误差的多函数线性模型。在功能主成分分析的基础上,应用最小二乘法估计功能系数和自回归系数。在一些正则条件下,我们建立了所提估计量的渐近性质。仿真研究了我们的估计器的有限样本性能。最后以中国气象数据为例,验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信