Rajni Kandari, Mamta Dahiya, Mohd Faraz, Neeraj Khare
{"title":"Effect of Magnetic NiO Nanoparticles on Pinning Properties of YBa2Cu3O7-x Superconductor","authors":"Rajni Kandari, Mamta Dahiya, Mohd Faraz, Neeraj Khare","doi":"10.1007/s10948-024-06885-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, we report the effects of incorporating magnetic Nickel oxide (NiO) nanoparticles in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> (YBCO), on the superconducting properties of the YBCO nanocomposite. The NiO was prepared by auto-combustion method and exhibited ferromagnetic nature at room temperature. The polycrystalline YBCO and its nanocomposites with NiO nanoparticles were synthesized using the solid-state reaction method. The addition of magnetic NiO nanoparticles in YBCO resulted in improved critical current density and flux pinning force in the measured range of temperature and magnetic fields. The observed high pinning at a lower field is attributed to the magnetic interaction of vortices with the NiO nanoparticles. At 60 K, the enhancement in critical current density of YBCO nanocomposite is ~ 1.7 times for low applied field, and ~ 1.2 times for high applied field, compared to the YBCO superconductor. The presence of NiO in the YBCO matrix also created more defects in YBCO, which enhanced the pinning properties and remained effective even at higher magnetic fields.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06885-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, we report the effects of incorporating magnetic Nickel oxide (NiO) nanoparticles in YBa2Cu3O7-x (YBCO), on the superconducting properties of the YBCO nanocomposite. The NiO was prepared by auto-combustion method and exhibited ferromagnetic nature at room temperature. The polycrystalline YBCO and its nanocomposites with NiO nanoparticles were synthesized using the solid-state reaction method. The addition of magnetic NiO nanoparticles in YBCO resulted in improved critical current density and flux pinning force in the measured range of temperature and magnetic fields. The observed high pinning at a lower field is attributed to the magnetic interaction of vortices with the NiO nanoparticles. At 60 K, the enhancement in critical current density of YBCO nanocomposite is ~ 1.7 times for low applied field, and ~ 1.2 times for high applied field, compared to the YBCO superconductor. The presence of NiO in the YBCO matrix also created more defects in YBCO, which enhanced the pinning properties and remained effective even at higher magnetic fields.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.