Envelope boundary conditions for the upper surface of two-dimensional canopy interacting with fluid flow

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Shota Akita, Kie Okabayashi, Shintaro Takeuchi
{"title":"Envelope boundary conditions for the upper surface of two-dimensional canopy interacting with fluid flow","authors":"Shota Akita,&nbsp;Kie Okabayashi,&nbsp;Shintaro Takeuchi","doi":"10.1007/s10404-024-02779-z","DOIUrl":null,"url":null,"abstract":"<div><p>Boundary conditions at the surface of a layer of flexible fibers (i.e. the canopy envelope) subjected to fluid flow are proposed for uniform and non-uniform motions of the fibers, where the fibers exhibit identical and individual motions, respectively, to understand the mechanisms of the swaying motion of the canopy. By assuming small deflections, the fibers are treated as rigid rods hinged to a flat wall and the effects of the hydrodynamic force on the fibers are expressed with the moment of fluid forces by averaging the Navier–Stokes equations. For the uniformly moving case, displacement of the envelope is represented by a mass-spring-damper system driven by the hydrodynamic force. As the non-uniformity of the canopy behavior enhances, the effects of the diffusion of fiber velocities and fluid inertia along the fiber stems play a more important role in the envelope displacement equation. Numerical simulations of fluid flow are conducted with the envelope displacement models as the boundary conditions at the canopy surface. The validity of the present models is assessed by comparison with the results of fluid–structure interaction (FSI) simulation, which directly solves the interaction between individual fibers and fluid by an immersed boundary method. With the envelope model for non-uniform displacement, the grid convergence of the numerical result is about a first order rate. The comparison of the terms in the envelope model for non-uniform displacement shows that diffusion of fiber velocities dominates the motion of fibers. The applicability of the model is assessed by varying the number density of the fibers.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02779-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Boundary conditions at the surface of a layer of flexible fibers (i.e. the canopy envelope) subjected to fluid flow are proposed for uniform and non-uniform motions of the fibers, where the fibers exhibit identical and individual motions, respectively, to understand the mechanisms of the swaying motion of the canopy. By assuming small deflections, the fibers are treated as rigid rods hinged to a flat wall and the effects of the hydrodynamic force on the fibers are expressed with the moment of fluid forces by averaging the Navier–Stokes equations. For the uniformly moving case, displacement of the envelope is represented by a mass-spring-damper system driven by the hydrodynamic force. As the non-uniformity of the canopy behavior enhances, the effects of the diffusion of fiber velocities and fluid inertia along the fiber stems play a more important role in the envelope displacement equation. Numerical simulations of fluid flow are conducted with the envelope displacement models as the boundary conditions at the canopy surface. The validity of the present models is assessed by comparison with the results of fluid–structure interaction (FSI) simulation, which directly solves the interaction between individual fibers and fluid by an immersed boundary method. With the envelope model for non-uniform displacement, the grid convergence of the numerical result is about a first order rate. The comparison of the terms in the envelope model for non-uniform displacement shows that diffusion of fiber velocities dominates the motion of fibers. The applicability of the model is assessed by varying the number density of the fibers.

Abstract Image

二维冠层上表面与流体相互作用的包络边界条件
针对纤维在流体作用下的均匀运动和非均匀运动,提出了一层柔性纤维(即冠层包络层)表面的边界条件,其中纤维分别表现出相同的运动和单独的运动,以了解冠层摇摆运动的机制。通过假设微小的挠度,将纤维视为连接在平壁上的刚性杆,并且通过平均Navier-Stokes方程,将流体动力对纤维的影响用流体力力矩表示。对于均匀运动的情况,包络层的位移由水动力驱动的质量-弹簧-阻尼器系统表示。随着冠层性能的非均匀性增强,纤维速度扩散和沿纤维茎的流体惯量对包络位移方程的影响越来越重要。以包络位移模型为边界条件,对冠层表面的流体流动进行了数值模拟。通过与流固耦合(FSI)仿真结果的对比,验证了模型的有效性。FSI仿真通过浸入边界法直接求解了单个纤维与流体之间的相互作用。采用非均匀位移包络模型,计算结果的网格收敛速度约为一阶。对非均匀位移包络模型中各项的比较表明,纤维速度的扩散支配着纤维的运动。通过改变纤维的数量密度来评估模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信