Leila Dehimi, Yacine Benguerba, Tarek Lemaoui, Marco Balsamo, Alessandro Erto
{"title":"Numerical investigation and microkinetic modelling of high-temperature water-gas shift reaction for hydrogen production using iron-based catalysts","authors":"Leila Dehimi, Yacine Benguerba, Tarek Lemaoui, Marco Balsamo, Alessandro Erto","doi":"10.1007/s12039-024-02326-x","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of the hydrogen economy worldwide has facilitated the production of hydrogen from various resources. The water-gas shift reaction (WGSR) serves as a critical intermediate step for hydrogen enrichment and CO reduction in syngas derived from carbon-based hydrogen production. This paper presents a numerical investigation into the kinetic modelling of high-temperature WGSR using an iron-based catalyst in a reactor equipped with a Ni membrane. The study employs the Podolski <i>et al.</i> kinetic model with a 93% Fe<sub>2</sub>O<sub>3</sub>/7% Cr<sub>2</sub>O<sub>3</sub> catalyst to evaluate the impact of temperature and the CO/H<sub>2</sub>O molar ratio on the overall reaction performance. Results indicate that an increase in temperature leads to a decrease in reactant conversion. To achieve optimal CO conversion and H<sub>2</sub> generation, a CO/H<sub>2</sub>O molar input ratio of 1 is necessary. On the other hand, a microkinetic model for WGSR based on the formate mechanism over an iron-based catalyst is proposed. This comprehensive model includes seven adsorbed species and encompasses 18 elementary-step forward reactions. The developed model also enables the evaluation of temperature effects on surface coverage. Key intermediates identified in the model include OH* and HCOO* species. Additionally, it was determined that CO activation is more favorable at high temperatures.</p><h3>Graphical abstract</h3><p>The kinetic modelling of the high-temperature water-gas shift reaction (HT-WGSR) was explored for hydrogen production. The process utilized a hydrogen-selective Ni-dense membrane reactor combined with iron-based catalysts, aiming to enhance efficiency and optimize hydrogen separation. Various parameters, such as temperature and feed ratio, influencing reaction rates were also evaluated.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"137 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02326-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of the hydrogen economy worldwide has facilitated the production of hydrogen from various resources. The water-gas shift reaction (WGSR) serves as a critical intermediate step for hydrogen enrichment and CO reduction in syngas derived from carbon-based hydrogen production. This paper presents a numerical investigation into the kinetic modelling of high-temperature WGSR using an iron-based catalyst in a reactor equipped with a Ni membrane. The study employs the Podolski et al. kinetic model with a 93% Fe2O3/7% Cr2O3 catalyst to evaluate the impact of temperature and the CO/H2O molar ratio on the overall reaction performance. Results indicate that an increase in temperature leads to a decrease in reactant conversion. To achieve optimal CO conversion and H2 generation, a CO/H2O molar input ratio of 1 is necessary. On the other hand, a microkinetic model for WGSR based on the formate mechanism over an iron-based catalyst is proposed. This comprehensive model includes seven adsorbed species and encompasses 18 elementary-step forward reactions. The developed model also enables the evaluation of temperature effects on surface coverage. Key intermediates identified in the model include OH* and HCOO* species. Additionally, it was determined that CO activation is more favorable at high temperatures.
Graphical abstract
The kinetic modelling of the high-temperature water-gas shift reaction (HT-WGSR) was explored for hydrogen production. The process utilized a hydrogen-selective Ni-dense membrane reactor combined with iron-based catalysts, aiming to enhance efficiency and optimize hydrogen separation. Various parameters, such as temperature and feed ratio, influencing reaction rates were also evaluated.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.