Application of Magnetic and Eddy-Current Methods to Assess the Thickness of the Hardened Layer on the Surface of AISI 321 Metastable Austenitic Steel Subjected to Frictional Treatment

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Larisa S. Goruleva, Polina A. Skorynina, Roman A. Savrai
{"title":"Application of Magnetic and Eddy-Current Methods to Assess the Thickness of the Hardened Layer on the Surface of AISI 321 Metastable Austenitic Steel Subjected to Frictional Treatment","authors":"Larisa S. Goruleva,&nbsp;Polina A. Skorynina,&nbsp;Roman A. Savrai","doi":"10.1007/s10921-024-01150-0","DOIUrl":null,"url":null,"abstract":"<div><p>The possibility of assessing the thickness of the hardened layer on the surface of AISI 321 metastable austenitic steel, subjected to frictional treatment with a sliding indenter under various normal loads, using the magnetic Barkhausen noise method and the eddy-current method is investigated. The production of hardened layers of different thicknesses is simulated by stepwise electrolytic etching. The results of the non-destructive methods were compared to those obtained by the microhardness method to determine the thickness of the hardened layer. It is shown that the thickness of the hardened layer can be assessed using the eddy-current method and the magnetic Barkhausen noise method. However, the eddy-current method is preferable. This is because, in addition to sensitivity to the ferromagnetic phase, it is also sensitive to the level of defectiveness of the γ-phase. At the same time, it is necessary to take into account in the test method that the thickness of the hardened layer determined by the non-destructive methods is less than that determined by the microhardness method.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01150-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The possibility of assessing the thickness of the hardened layer on the surface of AISI 321 metastable austenitic steel, subjected to frictional treatment with a sliding indenter under various normal loads, using the magnetic Barkhausen noise method and the eddy-current method is investigated. The production of hardened layers of different thicknesses is simulated by stepwise electrolytic etching. The results of the non-destructive methods were compared to those obtained by the microhardness method to determine the thickness of the hardened layer. It is shown that the thickness of the hardened layer can be assessed using the eddy-current method and the magnetic Barkhausen noise method. However, the eddy-current method is preferable. This is because, in addition to sensitivity to the ferromagnetic phase, it is also sensitive to the level of defectiveness of the γ-phase. At the same time, it is necessary to take into account in the test method that the thickness of the hardened layer determined by the non-destructive methods is less than that determined by the microhardness method.

Abstract Image

应用磁法和涡流法评定AISI 321亚稳奥氏体钢摩擦处理表面硬化层厚度
研究了用滑动压头对AISI 321亚稳奥氏体钢进行不同载荷摩擦处理后,用巴克豪森噪声法和涡流法测定其表面硬化层厚度的可能性。采用逐级电解刻蚀法模拟了不同厚度硬化层的生成过程。将非破坏性方法的结果与显微硬度法的结果进行了比较,以确定硬化层的厚度。结果表明,采用涡流法和磁巴克豪森噪声法可以评估硬化层的厚度。然而,涡流法是优选的。这是因为,除了对铁磁相的灵敏度外,它对γ相的缺陷程度也很敏感。同时,在试验方法中要考虑到用无损法测定的硬化层厚度小于用显微硬度法测定的硬化层厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信