{"title":"Influence of Initial Cloud Droplet Number Concentration on Warm-Sector Rainstorm in the Sichuan Basin","authors":"Peiwen Zhang, Pengguo Zhao, Zhiwei Heng, Qing Zheng, Yong Feng, Xingwen Jiang","doi":"10.1007/s00024-024-03599-6","DOIUrl":null,"url":null,"abstract":"<div><p>Warm-sector rainstorms (WSR) are among the main weather events that cause significant casualties in the Sichuan Basin (SCB). These events are challenging to predict accurately using numerical models, partly due to the locally high air pollution that complicates WSR microphysical and precipitation processes. Aerosols affect the initial cloud droplet number concentration (CDNC) directly, and the CDNC is a key parameter in microphysical schemes that directly influences precipitation prediction. However, how and to what extent the CDNC affects WSR predictions in the SCB remains unclear. In this study, sensitivity experiments were conducted using a cloud-resolving model to investigate how the CDNC affects WSRs in the SCB. The study showed that when the CDNC is high, warm rainfall is reduced, while the cold rainfall is increased, which changes with convection development. First, a higher initial CDNC inhibits warm rainfall during the initial stage of convection. Second, during convection development, a higher initial CDNC accelerates graupel growth and its transformation into rainwater. The cold rainfall process plays a dominant role in this process, leading to an increase in rainfall intensity. Finally, during the convection mature stage, the promoting effect of the CDNC on the cold rainfall process weakens, leading to a decreased rainfall intensity in the higher initial CDNC. In the “initial-development-mature” stage, a higher initial CDNC distinctly affects the precipitation intensity in the form of \"suppression-promotion-suppression.\" The findings of this study contribute to the ability to anticipate the development of WSRs based on pollution conditions in the SCB.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 12","pages":"3681 - 3701"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03599-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Warm-sector rainstorms (WSR) are among the main weather events that cause significant casualties in the Sichuan Basin (SCB). These events are challenging to predict accurately using numerical models, partly due to the locally high air pollution that complicates WSR microphysical and precipitation processes. Aerosols affect the initial cloud droplet number concentration (CDNC) directly, and the CDNC is a key parameter in microphysical schemes that directly influences precipitation prediction. However, how and to what extent the CDNC affects WSR predictions in the SCB remains unclear. In this study, sensitivity experiments were conducted using a cloud-resolving model to investigate how the CDNC affects WSRs in the SCB. The study showed that when the CDNC is high, warm rainfall is reduced, while the cold rainfall is increased, which changes with convection development. First, a higher initial CDNC inhibits warm rainfall during the initial stage of convection. Second, during convection development, a higher initial CDNC accelerates graupel growth and its transformation into rainwater. The cold rainfall process plays a dominant role in this process, leading to an increase in rainfall intensity. Finally, during the convection mature stage, the promoting effect of the CDNC on the cold rainfall process weakens, leading to a decreased rainfall intensity in the higher initial CDNC. In the “initial-development-mature” stage, a higher initial CDNC distinctly affects the precipitation intensity in the form of "suppression-promotion-suppression." The findings of this study contribute to the ability to anticipate the development of WSRs based on pollution conditions in the SCB.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.