{"title":"A new structure-preserving method for dual quaternion Hermitian eigenvalue problems","authors":"Wenxv Ding, Ying Li, Musheng Wei","doi":"10.1016/j.aml.2024.109432","DOIUrl":null,"url":null,"abstract":"Dual quaternion matrix decompositions have played a crucial role in fields such as formation control and image processing in recent years. In this paper, we present an eigenvalue decomposition algorithm for dual quaternion Hermitian matrices. The proposed algorithm is founded on the structure-preserving tridiagonalization of the dual matrix representation of dual quaternion Hermitian matrices through the application of orthogonal matrices. Owing to the utilization of orthogonal transformations, the algorithm exhibits numerical stability. Numerical experiments are provided to illustrate the efficiency of the structure-preserving algorithm.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109432","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Dual quaternion matrix decompositions have played a crucial role in fields such as formation control and image processing in recent years. In this paper, we present an eigenvalue decomposition algorithm for dual quaternion Hermitian matrices. The proposed algorithm is founded on the structure-preserving tridiagonalization of the dual matrix representation of dual quaternion Hermitian matrices through the application of orthogonal matrices. Owing to the utilization of orthogonal transformations, the algorithm exhibits numerical stability. Numerical experiments are provided to illustrate the efficiency of the structure-preserving algorithm.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.