Finite time blow-up for a heat equation in [formula omitted]

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Kaiqiang Zhang
{"title":"Finite time blow-up for a heat equation in [formula omitted]","authors":"Kaiqiang Zhang","doi":"10.1016/j.aml.2024.109441","DOIUrl":null,"url":null,"abstract":"We consider the semilinear heat equation <ce:display><ce:formula><mml:math altimg=\"si1.svg\" display=\"block\"><mml:mrow><mml:msub><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub><mml:mo linebreak=\"goodbreak\">−</mml:mo><mml:mi>Δ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo linebreak=\"badbreak\">−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mspace width=\"1em\"></mml:mspace><mml:mspace width=\"1em\"></mml:mspace><mml:mtext>on</mml:mtext><mml:mspace width=\"1em\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math></ce:formula></ce:display>where <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>p</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>, and <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> is a parameter. When <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>, the equation reduces to the classical heat equation. We reveal that the parameter <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mi>λ</mml:mi></mml:math> in the linear term plays an important role in the blow-up conditions. Although the solution may blow up in finite time due to the cumulative effect of the nonlinearities, interestingly, we find that for <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mfrac><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:math>, all non-negative solutions blow up in finite time, which shows that the Fujita exponent is equal to <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mo>+</mml:mo><mml:mi>∞</mml:mi></mml:mrow></mml:math>. Our result extends the Theorem 17.1 in Quittner and Souplet (2007). In addition, for <mml:math altimg=\"si8.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&lt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>, we provide a new sufficient condition for the finite time blow-up solution.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109441","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the semilinear heat equation utΔu=|u|p1u+λu,onRnwhere p>1, and λR is a parameter. When λ=0, the equation reduces to the classical heat equation. We reveal that the parameter λ in the linear term plays an important role in the blow-up conditions. Although the solution may blow up in finite time due to the cumulative effect of the nonlinearities, interestingly, we find that for λ>n2, all non-negative solutions blow up in finite time, which shows that the Fujita exponent is equal to +. Our result extends the Theorem 17.1 in Quittner and Souplet (2007). In addition, for λ<0, we provide a new sufficient condition for the finite time blow-up solution.
[公式略]中热方程的有限时间爆破
考虑半线性热方程ut−Δu=|u|p−1u+λu, onrwhere p>1, λ∈R为参数。当λ=0时,方程化为经典热方程。我们发现线性项中的参数λ在爆破条件中起着重要的作用。虽然由于非线性的累积效应,解可能在有限时间内爆炸,但有趣的是,我们发现对于λ>;n2,所有非负解在有限时间内爆炸,这表明Fujita指数等于+∞。我们的结果推广了Quittner and Souplet(2007)中的定理17.1。此外,对于λ<;0,给出了有限时间爆破解的一个新的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信