Souvik Pore , Alexia Pelloux , Anders Bergqvist , Mainak Chatterjee , Kunal Roy
{"title":"Intelligent consensus-based predictions of early life stage toxicity in fish tested in compliance with OECD Test Guideline 210","authors":"Souvik Pore , Alexia Pelloux , Anders Bergqvist , Mainak Chatterjee , Kunal Roy","doi":"10.1016/j.aquatox.2024.107216","DOIUrl":null,"url":null,"abstract":"<div><div>Early life stage (ELS) toxicity testing in fish is a crucial test procedure used to evaluate the long-term effects of a wide range of chemicals, including pesticides, industrial chemicals, pharmaceuticals, and food additives. This test is particularly important for screening and prioritizing thousands of chemicals under the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. In silico methods can be used to estimate the toxicity of a chemical when no experimental data is available and to reduce the cost, time, and resources involved in the experimentation process. In the present study, we developed predictive Quantitative Structure-Activity Relationship (QSAR) models to assess chronic effects of chemicals on ELS in fish. Toxicity data for ELS in fish was collected from two different sources, i.e. J-CHECK and eChemPortal, which contain robust study summaries of experimental studies performed according to OECD Test Guideline 210. The collected data included two types of endpoints – the No Observed Effect Concentration (NOEC) and the Lowest Observed Effect Concentration (LOEC), which were utilized to develop the QSAR models. Six different partial least squares (PLS) models with various descriptor combinations were created for both endpoints. These models were then employed for intelligent consensus-based prediction to enhance predictability for unknown chemicals. Among these models, the consensus model – 3 (Q<sup>2</sup><sub>F1</sub> = 0.71, Q<sup>2</sup><sub>F2</sub> = 0.71) and individual model – 3 (Q<sup>2</sup><sub>F1</sub> = 0.80, Q<sup>2</sup><sub>F2</sub> = 0.79) exhibited most promising results for both the NOEC and LOEC endpoints. Furthermore, these models were validated experimentally using experimental data from nine different industrial chemicals provided by Global Product Compliance (Europe) AB. Lastly, the models were used to screen and prioritize chemicals obtained from the Pesticide Properties (PPDB) and DrugBank databases.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107216"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24003850","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early life stage (ELS) toxicity testing in fish is a crucial test procedure used to evaluate the long-term effects of a wide range of chemicals, including pesticides, industrial chemicals, pharmaceuticals, and food additives. This test is particularly important for screening and prioritizing thousands of chemicals under the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. In silico methods can be used to estimate the toxicity of a chemical when no experimental data is available and to reduce the cost, time, and resources involved in the experimentation process. In the present study, we developed predictive Quantitative Structure-Activity Relationship (QSAR) models to assess chronic effects of chemicals on ELS in fish. Toxicity data for ELS in fish was collected from two different sources, i.e. J-CHECK and eChemPortal, which contain robust study summaries of experimental studies performed according to OECD Test Guideline 210. The collected data included two types of endpoints – the No Observed Effect Concentration (NOEC) and the Lowest Observed Effect Concentration (LOEC), which were utilized to develop the QSAR models. Six different partial least squares (PLS) models with various descriptor combinations were created for both endpoints. These models were then employed for intelligent consensus-based prediction to enhance predictability for unknown chemicals. Among these models, the consensus model – 3 (Q2F1 = 0.71, Q2F2 = 0.71) and individual model – 3 (Q2F1 = 0.80, Q2F2 = 0.79) exhibited most promising results for both the NOEC and LOEC endpoints. Furthermore, these models were validated experimentally using experimental data from nine different industrial chemicals provided by Global Product Compliance (Europe) AB. Lastly, the models were used to screen and prioritize chemicals obtained from the Pesticide Properties (PPDB) and DrugBank databases.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.