Control of existing tunnel deformation caused by shield adjacent undercrossing construction using interpretable machine learning and multiobjective optimization
IF 9.6 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Hongyu Chen , Jun Liu , Geoffrey Qiping Shen , Zongbao Feng
{"title":"Control of existing tunnel deformation caused by shield adjacent undercrossing construction using interpretable machine learning and multiobjective optimization","authors":"Hongyu Chen , Jun Liu , Geoffrey Qiping Shen , Zongbao Feng","doi":"10.1016/j.autcon.2024.105943","DOIUrl":null,"url":null,"abstract":"<div><div>A hybrid intelligent framework is proposed in this paper to reduce the existing tunnel deformation caused by shield adjacent undercrossing construction (SAUC). A Bayesian optimization natural gradient boosting (BO-NGBoost) model for existing tunnel deformation prediction is developed, and the Shapley additive explanations (SHAP) approach is used to analyze the interpretability of the prediction model. The multiobjective evolutionary algorithm based on decomposition (MOEA/D) is used to optimize the construction parameters. The applicability and validity of the proposed method are tested in a case study from the Wuhan Metro. The results indicate that (1) the established BO-NGBoost existing tunnel deformation prediction model shows high accuracy. (2) Through SHAP analysis, the importance of each input parameter to the existing tunnel deformation is identified, and the key shield optimization parameters are defined. (3) By using the developed BO-NGBoost-MOEA/D algorithm to optimize the key parameters, the existing tunnel deformation is effectively controlled.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"170 ","pages":"Article 105943"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524006794","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A hybrid intelligent framework is proposed in this paper to reduce the existing tunnel deformation caused by shield adjacent undercrossing construction (SAUC). A Bayesian optimization natural gradient boosting (BO-NGBoost) model for existing tunnel deformation prediction is developed, and the Shapley additive explanations (SHAP) approach is used to analyze the interpretability of the prediction model. The multiobjective evolutionary algorithm based on decomposition (MOEA/D) is used to optimize the construction parameters. The applicability and validity of the proposed method are tested in a case study from the Wuhan Metro. The results indicate that (1) the established BO-NGBoost existing tunnel deformation prediction model shows high accuracy. (2) Through SHAP analysis, the importance of each input parameter to the existing tunnel deformation is identified, and the key shield optimization parameters are defined. (3) By using the developed BO-NGBoost-MOEA/D algorithm to optimize the key parameters, the existing tunnel deformation is effectively controlled.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.