POSS-Crosslinked Gel Polymer Electrolytes Enabling Low-Temperature Tolerant Dye-Sensitized Solar Cells

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Jianfei Lin, Yanan Li, Yinglin Wang, Lingling Wang, Xintong Zhang
{"title":"POSS-Crosslinked Gel Polymer Electrolytes Enabling Low-Temperature Tolerant Dye-Sensitized Solar Cells","authors":"Jianfei Lin, Yanan Li, Yinglin Wang, Lingling Wang, Xintong Zhang","doi":"10.1016/j.electacta.2024.145596","DOIUrl":null,"url":null,"abstract":"Efficient operation of electrochemical energy devices below freezing point poses a significant challenge for enhancing their environment adaptability. This issue is particularly critical for quasi-solid-state devices those utilize gel polymer electrolytes (GPEs), since low temperature could enhance polymer crystallization in GPEs, inducing external steric hindrance that impede ionic conductivity. Herein, we utilized polyhedral oligomeric silsesquioxanes (POSS) as the eight-armed cross-linking points in an in-situ photopolymerized network, thereby constructing low-temperature tolerance GPEs for dye-sensitized solar cells (DSSCs). Compared to conventional triple-armed cross-linking, POSS could increase the disorder of the polymer network and significantly lower the glass transition temperature of the GPE from -30°C to -48.7 °C. At an ultralow working temperature of -40 °C, the POSS-linked GPEs show a high ionic diffusion coefficient of 0.71 × 10<sup>-6</sup> cm<sup>2</sup> s<sup>-1</sup> compare to that of liquid electrolyte, ensuring that the quasi-solid-state DSSCs successfully retained 36.3% of their room-temperature efficiency. Our work proved a design method for the low-temperature tolerance GPEs, which could enable the advanced electrochemical application in harsh climates, such as sensor, energy generation, and storage devices.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"23 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145596","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient operation of electrochemical energy devices below freezing point poses a significant challenge for enhancing their environment adaptability. This issue is particularly critical for quasi-solid-state devices those utilize gel polymer electrolytes (GPEs), since low temperature could enhance polymer crystallization in GPEs, inducing external steric hindrance that impede ionic conductivity. Herein, we utilized polyhedral oligomeric silsesquioxanes (POSS) as the eight-armed cross-linking points in an in-situ photopolymerized network, thereby constructing low-temperature tolerance GPEs for dye-sensitized solar cells (DSSCs). Compared to conventional triple-armed cross-linking, POSS could increase the disorder of the polymer network and significantly lower the glass transition temperature of the GPE from -30°C to -48.7 °C. At an ultralow working temperature of -40 °C, the POSS-linked GPEs show a high ionic diffusion coefficient of 0.71 × 10-6 cm2 s-1 compare to that of liquid electrolyte, ensuring that the quasi-solid-state DSSCs successfully retained 36.3% of their room-temperature efficiency. Our work proved a design method for the low-temperature tolerance GPEs, which could enable the advanced electrochemical application in harsh climates, such as sensor, energy generation, and storage devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信