Highly Strained Polymeric Monolayer Stacked for Wafer-Scale and Transferable Nanodielectrics

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-28 DOI:10.1021/acsnano.4c11958
Wenbin Li, Xiao Han, Baichuan Jiang, Jun Li, Cailing Ou, Tingyu Ji, Zixiao Han, Nannan Dou, Xiaoru Cao, Lei Zhang
{"title":"Highly Strained Polymeric Monolayer Stacked for Wafer-Scale and Transferable Nanodielectrics","authors":"Wenbin Li, Xiao Han, Baichuan Jiang, Jun Li, Cailing Ou, Tingyu Ji, Zixiao Han, Nannan Dou, Xiaoru Cao, Lei Zhang","doi":"10.1021/acsnano.4c11958","DOIUrl":null,"url":null,"abstract":"As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.2 nm thick PVP monolayer. By employing a double cross-linking strategy, an exceptional dielectric performance is achieved with a leakage current of 10<sup>–7</sup>–10<sup>–8</sup> A/cm<sup>2</sup> at 2 MV/cm across the low-<i>k</i> PVP layers as thin as 3.6 nm. Furthermore, the obtained nanodielectric layers could be laminated onto various substrates on demand via polydimethylsiloxane soft stamps, enabling its application in organic field-effect transistors of both bottom-gate and top-gate configurations. This work represents a pivotal development in (opto-)electronic molecular materials and heralds an emerging avenue for the exploration of functional nanodielectrics in the field of nanoelectronics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"37 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11958","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.2 nm thick PVP monolayer. By employing a double cross-linking strategy, an exceptional dielectric performance is achieved with a leakage current of 10–7–10–8 A/cm2 at 2 MV/cm across the low-k PVP layers as thin as 3.6 nm. Furthermore, the obtained nanodielectric layers could be laminated onto various substrates on demand via polydimethylsiloxane soft stamps, enabling its application in organic field-effect transistors of both bottom-gate and top-gate configurations. This work represents a pivotal development in (opto-)electronic molecular materials and heralds an emerging avenue for the exploration of functional nanodielectrics in the field of nanoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信