VS2/Bi2S3 Spring‐Type Heterointerfaces Hollow Microspheres with Spatial Confinement and Vacancy Defects for Fast‐Charging and Ampere‐Hour Scale Pouch Sodium‐Ion Hybrid Capacitors

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Enzhi Li, Mingshan Wang, Wen Xu, Daniel Höche, Yuanlong Feng, Junchen Chen, Bo Yu, Bingshu Guo, Zhiyuan Ma, Yun Huang, Xing Li, Guozhong Cao
{"title":"VS2/Bi2S3 Spring‐Type Heterointerfaces Hollow Microspheres with Spatial Confinement and Vacancy Defects for Fast‐Charging and Ampere‐Hour Scale Pouch Sodium‐Ion Hybrid Capacitors","authors":"Enzhi Li, Mingshan Wang, Wen Xu, Daniel Höche, Yuanlong Feng, Junchen Chen, Bo Yu, Bingshu Guo, Zhiyuan Ma, Yun Huang, Xing Li, Guozhong Cao","doi":"10.1002/aenm.202405674","DOIUrl":null,"url":null,"abstract":"Optimizing electrochemical kinetics by regulation ion/charge transfer efficiency and stabilizing the electrode structure of electrode materials is crucial to maximize the rapid charging and long cycling sodium‐ion storage. Herein, VS<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> spring‐type heterointerfaces hollow microspheres with spatial confinement and sulfur vacancy defects are synthesized as a fast‐charging anode for sodium‐ion hybrid capacitors (SIHCs). The experimental studies coupled with density functional theory calculations verify that the strong coupling between VS<jats:sub>2</jats:sub> and Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> induces a stable built‐in electric field, largely promoting the charge and sodium‐ion transfer efficiency. Sulfur vacancy defects at the heterointerfaces produce additional sodium‐ion pseudocapacitive storage, which improves the reversible capacity and large‐rate fast charge performance of the VS<jats:sub>2</jats:sub>/Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> electrode. Finite element analysis and in situ expansion test confirm that the spring‐type heterostructured hollow microspheres formed by flat‐morphology VS<jats:sub>2</jats:sub> and zigzag‐morphology Bi<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> stacking mitigate the lattice expansion and contraction during sodium‐ion insertion/extraction, accommodate the mechanical stresses, and maintain the integrity of the heterojunction interface. When employed in coin SIHC, it achieves a high energy/power density of 135 Wh kg<jats:sup>−1</jats:sup>/22 kW kg<jats:sup>−1</jats:sup>, and an ultralong life of 50 000 cycles; the assembled pouch SIHC (1 Ah) demonstrates a high specific energy of 120 Wh kg<jats:sup>−1</jats:sup> with fast‐charging at 10 C, and 95.5% capacity retention after 1000 cycles.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"66 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405674","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing electrochemical kinetics by regulation ion/charge transfer efficiency and stabilizing the electrode structure of electrode materials is crucial to maximize the rapid charging and long cycling sodium‐ion storage. Herein, VS2/Bi2S3 spring‐type heterointerfaces hollow microspheres with spatial confinement and sulfur vacancy defects are synthesized as a fast‐charging anode for sodium‐ion hybrid capacitors (SIHCs). The experimental studies coupled with density functional theory calculations verify that the strong coupling between VS2 and Bi2S3 induces a stable built‐in electric field, largely promoting the charge and sodium‐ion transfer efficiency. Sulfur vacancy defects at the heterointerfaces produce additional sodium‐ion pseudocapacitive storage, which improves the reversible capacity and large‐rate fast charge performance of the VS2/Bi2S3 electrode. Finite element analysis and in situ expansion test confirm that the spring‐type heterostructured hollow microspheres formed by flat‐morphology VS2 and zigzag‐morphology Bi2S3 stacking mitigate the lattice expansion and contraction during sodium‐ion insertion/extraction, accommodate the mechanical stresses, and maintain the integrity of the heterojunction interface. When employed in coin SIHC, it achieves a high energy/power density of 135 Wh kg−1/22 kW kg−1, and an ultralong life of 50 000 cycles; the assembled pouch SIHC (1 Ah) demonstrates a high specific energy of 120 Wh kg−1 with fast‐charging at 10 C, and 95.5% capacity retention after 1000 cycles.

Abstract Image

具有空间约束和空位缺陷的VS2/Bi2S3弹簧型异质界面空心微球用于快速充电和安培小时尺度袋状钠离子混合电容器
通过调节离子/电荷转移效率来优化电化学动力学和稳定电极材料的电极结构是实现钠离子快速充电和长循环储存的关键。本文合成了具有空间约束和硫空位缺陷的VS2/Bi2S3弹簧型异质界面空心微球,作为钠离子混合电容器(sihc)的快速充电阳极。实验研究和密度泛函理论计算验证了VS2和Bi2S3之间的强耦合诱导了一个稳定的内建电场,极大地提高了电荷和钠离子的转移效率。异质界面处的硫空位缺陷产生了额外的钠离子赝电容存储,提高了VS2/Bi2S3电极的可逆容量和大速率快充性能。有限元分析和原位膨胀试验证实,由平面形态VS2和之形形态Bi2S3叠层形成的弹簧型异质结构空心微球可以减轻钠离子插入/提取过程中晶格的膨胀和收缩,调节机械应力,保持异质结界面的完整性。当用于硬币SIHC时,它实现了135 Wh kg - 1/22 kW kg - 1的高能量/功率密度,以及5万次循环的超长寿命;组装的小袋SIHC (1 Ah)在10℃下快速充电时显示出120 Wh kg−1的高比能,1000次循环后容量保持率为95.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信