Zhou-Hua Cheng , Ji Li , Hui Zhang , Dong-Feng Liu , Han-Qing Yu
{"title":"Influent, as opposed to activated sludge, is more suitable for SARS-CoV-2 surveillance in wastewater treatment plants","authors":"Zhou-Hua Cheng , Ji Li , Hui Zhang , Dong-Feng Liu , Han-Qing Yu","doi":"10.1016/j.watres.2024.123038","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater surveillance programs based at wastewater treatment plants (WWTPs) have been widely implemented, becoming a crucial measure for public health. Recently, the scope of monitoring has expanded from influent wastewater to include primary settled solids and activated sludge. The effectiveness of monitoring primary settled solids has been widely validated, but the suitability of activated sludge as a monitoring target remains unclear. In this work, we investigated the total amount distribution coefficients of SARS-CoV-2 RNA in both solid and liquid fractions of influent and biological treatment process in WWTPs. Capitalizing on the strategic timing of policy adjustments in China, we conducted a quantitative analysis of the SARS-CoV-2 monitoring results over a three-month span during the first large-scale COVID-19 outbreak from three WWTPs in Hefei city, China. Importantly, in the monitoring of activated sludge, we observed a significant delayed effect, with the viral peak occurring 1 to 2 weeks later than in the influent. In addition, we also reveal a significant correlation between the abundance of SARS-CoV-2 in influent and urban resident behaviors, providing novel insights into the pandemic's dynamics. Collectively, this work demonstrates that influent sample is more appropriate for wastewater surveillance compared to sludge sample.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"273 ","pages":"Article 123038"},"PeriodicalIF":12.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424019389","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater surveillance programs based at wastewater treatment plants (WWTPs) have been widely implemented, becoming a crucial measure for public health. Recently, the scope of monitoring has expanded from influent wastewater to include primary settled solids and activated sludge. The effectiveness of monitoring primary settled solids has been widely validated, but the suitability of activated sludge as a monitoring target remains unclear. In this work, we investigated the total amount distribution coefficients of SARS-CoV-2 RNA in both solid and liquid fractions of influent and biological treatment process in WWTPs. Capitalizing on the strategic timing of policy adjustments in China, we conducted a quantitative analysis of the SARS-CoV-2 monitoring results over a three-month span during the first large-scale COVID-19 outbreak from three WWTPs in Hefei city, China. Importantly, in the monitoring of activated sludge, we observed a significant delayed effect, with the viral peak occurring 1 to 2 weeks later than in the influent. In addition, we also reveal a significant correlation between the abundance of SARS-CoV-2 in influent and urban resident behaviors, providing novel insights into the pandemic's dynamics. Collectively, this work demonstrates that influent sample is more appropriate for wastewater surveillance compared to sludge sample.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.