Investigation of the flow characteristics of slit check dams using novel models

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Muhammet Emin Emiroglu, Erdinc Ikinciogullari, Eyyup Ensar Yalcin, Enes Gul
{"title":"Investigation of the flow characteristics of slit check dams using novel models","authors":"Muhammet Emin Emiroglu,&nbsp;Erdinc Ikinciogullari,&nbsp;Eyyup Ensar Yalcin,&nbsp;Enes Gul","doi":"10.1007/s13201-024-02344-7","DOIUrl":null,"url":null,"abstract":"<div><p>Floods, which cause loss of life and property and destruction of the environment, have devastating effects on socio-economic welfare. Slit-check dams are essential structures for managing the transport of silt and woody debris, especially in events of significant floods. The current study presents the hydraulic characteristics of slit-check dams with different geometries for experimental and numerical tests. First, the Butterfly model was produced with a 3D printer and examined experimentally. Then, the Butterfly model was validated extensively using OpenFOAM (<i>v</i>7) software for the numerical analysis. Finally, the other models were examined numerically using the k-ε turbulence model. The changes in water surface profile, velocity profiles, energy dissipation rates, and streamlines were comprehensively examined and discussed. The results showed that slit-check dams caused hydraulic jumps and dissipated flow energy. The Arced and Rectangular models, in particular, demonstrated a significant performance for energy dissipation, which is essential for flood management. Water surface profiles are directly affected by discharge. Moreover, the cross-sectional length of the model in question significantly affects the water surface profile. Accordingly, an increase was observed in the velocity profiles along the slit-check dam. While the maximum velocity for all unit discharge was observed in the V-shaped model, the minimum velocities were observed for the Arced and Rectangular models. Thus, the energy absorption performance of Arced and Rectangular models is higher.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02344-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02344-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Floods, which cause loss of life and property and destruction of the environment, have devastating effects on socio-economic welfare. Slit-check dams are essential structures for managing the transport of silt and woody debris, especially in events of significant floods. The current study presents the hydraulic characteristics of slit-check dams with different geometries for experimental and numerical tests. First, the Butterfly model was produced with a 3D printer and examined experimentally. Then, the Butterfly model was validated extensively using OpenFOAM (v7) software for the numerical analysis. Finally, the other models were examined numerically using the k-ε turbulence model. The changes in water surface profile, velocity profiles, energy dissipation rates, and streamlines were comprehensively examined and discussed. The results showed that slit-check dams caused hydraulic jumps and dissipated flow energy. The Arced and Rectangular models, in particular, demonstrated a significant performance for energy dissipation, which is essential for flood management. Water surface profiles are directly affected by discharge. Moreover, the cross-sectional length of the model in question significantly affects the water surface profile. Accordingly, an increase was observed in the velocity profiles along the slit-check dam. While the maximum velocity for all unit discharge was observed in the V-shaped model, the minimum velocities were observed for the Arced and Rectangular models. Thus, the energy absorption performance of Arced and Rectangular models is higher.

用新模型研究狭缝拦河坝的流动特性
洪水造成生命财产损失和环境破坏,对社会经济福利造成毁灭性影响。缝挡水坝是管理淤泥和木屑运输的重要结构,特别是在发生重大洪水时。本文研究了不同几何形状的缝挡坝的水力特性,并进行了试验和数值试验。首先,用3D打印机制作蝴蝶模型并进行实验检验。然后,使用OpenFOAM (v7)软件进行数值分析,对Butterfly模型进行了广泛的验证。最后,用k-ε湍流模型对其他模型进行了数值检验。全面考察和讨论了水面剖面、速度剖面、能量耗散率和流线的变化。结果表明,缝挡坝引起了水跃,耗散了水流能。特别是圆弧和矩形模型,在能量耗散方面表现出了显著的性能,这对洪水管理至关重要。水面轮廓直接受到排放的影响。此外,模型的横截面长度对水面剖面有显著影响。因此,沿狭缝坝的速度分布有所增加。在v形模型中观察到所有单位流量的最大速度,而在圆弧和矩形模型中观察到最小速度。因此,圆弧和矩形模型的吸能性能更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信