{"title":"Learning Operator-Valued Kernels From Multilabel Datesets With Fuzzy Rough Sets","authors":"Zhenxin Wang;Degang Chen;Xiaoya Che","doi":"10.1109/TFUZZ.2024.3522466","DOIUrl":null,"url":null,"abstract":"In multilabel learning, the precise mining and appropriate application of label correlation can improve the effectiveness and generalization of prediction models. In order to characterize label correlation more carefully, the concept of operator-valued kernel is introduced. The value of operator-valued kernel is an operator on Hilbert space, and when applied to a practical problem, the function-valued operator degenerates into a positive-definite matrix, which aims to describe the label correlation. However, existing works focus on the basic theory of operator-valued kernel, and lack way to learn specific kernel from specific datasets, thus the application of operator-valued kernel in practical problem is greatly hindered. In this article, we focus on learning operator-valued kernels with fuzzy rough sets from multilabel datasets and designing learning algorithm for multilabel classification. First, the importance distribution of feature set to different labels at each sample is measured by using kernelized fuzzy rough sets. For a single sample, label correlation matrix is constructed based on the consistency of the importance distribution of features to labels, so as to characterize the correlation information between different labels. By considering the interaction information between two label correlation matrices, the label incidence matrix between two samples is obtained. Therefore, a new operator-valued kernel is defined by using label incidence matrices as elements. This operator-valued kernel is further proved to be an entangled and transformable kernel. On the basis, the proposed operator-valued kernel is applied to develop an efficient learning algorithm for multilabel classification. The generalization error bound of the prediction function is measured by Rademacher complexity. In order to illustrate the effectiveness of our algorithm, the classification experiments and statistical analysis results on twelve multilabel datasets are provided, which are compared with seven high performance algorithms.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 4","pages":"1311-1321"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816207/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In multilabel learning, the precise mining and appropriate application of label correlation can improve the effectiveness and generalization of prediction models. In order to characterize label correlation more carefully, the concept of operator-valued kernel is introduced. The value of operator-valued kernel is an operator on Hilbert space, and when applied to a practical problem, the function-valued operator degenerates into a positive-definite matrix, which aims to describe the label correlation. However, existing works focus on the basic theory of operator-valued kernel, and lack way to learn specific kernel from specific datasets, thus the application of operator-valued kernel in practical problem is greatly hindered. In this article, we focus on learning operator-valued kernels with fuzzy rough sets from multilabel datasets and designing learning algorithm for multilabel classification. First, the importance distribution of feature set to different labels at each sample is measured by using kernelized fuzzy rough sets. For a single sample, label correlation matrix is constructed based on the consistency of the importance distribution of features to labels, so as to characterize the correlation information between different labels. By considering the interaction information between two label correlation matrices, the label incidence matrix between two samples is obtained. Therefore, a new operator-valued kernel is defined by using label incidence matrices as elements. This operator-valued kernel is further proved to be an entangled and transformable kernel. On the basis, the proposed operator-valued kernel is applied to develop an efficient learning algorithm for multilabel classification. The generalization error bound of the prediction function is measured by Rademacher complexity. In order to illustrate the effectiveness of our algorithm, the classification experiments and statistical analysis results on twelve multilabel datasets are provided, which are compared with seven high performance algorithms.
期刊介绍:
The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.