Unfitted finite element method for the quad-curl interface problem

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Hailong Guo, Mingyan Zhang, Qian Zhang, Zhimin Zhang
{"title":"Unfitted finite element method for the quad-curl interface problem","authors":"Hailong Guo,&nbsp;Mingyan Zhang,&nbsp;Qian Zhang,&nbsp;Zhimin Zhang","doi":"10.1007/s10444-024-10213-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche’s method for <span>\\({\\operatorname {curl}}{\\operatorname {curl}}\\)</span>-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix’s condition number. Our numerical tests back up our theory on convergence rates and condition numbers.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10213-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel unfitted finite element method to solve the quad-curl interface problem. We adapt Nitsche’s method for \({\operatorname {curl}}{\operatorname {curl}}\)-conforming elements and double the degrees of freedom on interface elements. To ensure stability, we incorporate ghost penalty terms and a discrete divergence-free term. We establish the well-posedness of our method and demonstrate an optimal error bound in the discrete energy norm. We also analyze the stiffness matrix’s condition number. Our numerical tests back up our theory on convergence rates and condition numbers.

四旋度界面问题的非拟合有限元法
本文提出了一种求解四旋度界面问题的非拟合有限元方法。我们采用Nitsche的方法求解\({\operatorname {curl}}{\operatorname {curl}}\) -一致性单元,并将界面单元的自由度加倍。为了保证稳定性,我们加入了鬼罚项和一个离散的无发散项。建立了该方法的适定性,并给出了离散能量范数下的最优误差界。分析了刚度矩阵的条件数。我们的数值测试支持了我们关于收敛速率和条件数的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信