A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation‐mediated auxin biosynthesis signalling pathway in rice

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Song Liu, Jiamin Wu, Amos Musyoki Mawia, Xiangjin Wei, Ruijie Cao, Guiai Jiao, Yawen Wu, Jian Zhang, Lihong Xie, Zhonghua Sheng, Shikai Hu, Sanfeng Li, Yusong Lv, Feifei Lu, Yujuan Chen, Sajid Fiaz, Javaria Tabassum, Zhimin Du, Fangyuan Gao, Guangjun Ren, Gaoneng Shao, Peisong Hu, Shaoqing Tang
{"title":"A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation‐mediated auxin biosynthesis signalling pathway in rice","authors":"Song Liu, Jiamin Wu, Amos Musyoki Mawia, Xiangjin Wei, Ruijie Cao, Guiai Jiao, Yawen Wu, Jian Zhang, Lihong Xie, Zhonghua Sheng, Shikai Hu, Sanfeng Li, Yusong Lv, Feifei Lu, Yujuan Chen, Sajid Fiaz, Javaria Tabassum, Zhimin Du, Fangyuan Gao, Guangjun Ren, Gaoneng Shao, Peisong Hu, Shaoqing Tang","doi":"10.1111/pbi.14558","DOIUrl":null,"url":null,"abstract":"SummaryEnhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes. However, studies on genetic functions of MYB in rice yield and quality are rarely to be reported. Here, we investigated a nucleus‐localized transcription factor <jats:italic>OsMYB73</jats:italic> which is preferentially expressed in the early developing pericarp and endosperm. We generated targeted mutagenesis of <jats:italic>OsMYB73</jats:italic> in rice, and the mutants had longer grains with obvious white‐belly chalky endosperm appearance phenotype. The mutants displayed various changes in starch physicochemical characteristics and lipid components. Transcriptome sequencing analysis showed that <jats:italic>OsMYB73</jats:italic> was chiefly involved in cell wall development and starch metabolism. <jats:italic>OsMYB73</jats:italic> mutation affects the expression of genes related to grain size, starch and lipid biosynthesis and auxin biosynthesis. Moreover, inactivation of <jats:italic>OsMYB73</jats:italic> triggers broad changes in secondary metabolites. We speculate that rice <jats:italic>OsMYB73</jats:italic> and <jats:italic>OsNF‐YB1</jats:italic> play synergistic pivotal role in simultaneously as transcription activators to regulate grain filling and storage compounds accumulation to affect endosperm development and grain chalkiness through binding <jats:italic>OsISA2</jats:italic>, <jats:italic>OsLTPL36</jats:italic> and <jats:italic>OsYUC11</jats:italic>. The study provides important germplasm resources and theoretical basis for genetic improvement of rice yield and quality. In addition, we enriches the potential biological functions of rice MYB family transcription factors.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"62 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14558","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryEnhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes. However, studies on genetic functions of MYB in rice yield and quality are rarely to be reported. Here, we investigated a nucleus‐localized transcription factor OsMYB73 which is preferentially expressed in the early developing pericarp and endosperm. We generated targeted mutagenesis of OsMYB73 in rice, and the mutants had longer grains with obvious white‐belly chalky endosperm appearance phenotype. The mutants displayed various changes in starch physicochemical characteristics and lipid components. Transcriptome sequencing analysis showed that OsMYB73 was chiefly involved in cell wall development and starch metabolism. OsMYB73 mutation affects the expression of genes related to grain size, starch and lipid biosynthesis and auxin biosynthesis. Moreover, inactivation of OsMYB73 triggers broad changes in secondary metabolites. We speculate that rice OsMYB73 and OsNF‐YB1 play synergistic pivotal role in simultaneously as transcription activators to regulate grain filling and storage compounds accumulation to affect endosperm development and grain chalkiness through binding OsISA2, OsLTPL36 and OsYUC11. The study provides important germplasm resources and theoretical basis for genetic improvement of rice yield and quality. In addition, we enriches the potential biological functions of rice MYB family transcription factors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信