Taiyi Zhao , Zhiguo Sun , Jingquan Wang , Yuchun Tang , Liz Varga , Mirosław J. Skibniewski
{"title":"Resilience-based transportation system planning optimization through dedicated autonomous vehicle lanes configuration","authors":"Taiyi Zhao , Zhiguo Sun , Jingquan Wang , Yuchun Tang , Liz Varga , Mirosław J. Skibniewski","doi":"10.1016/j.tre.2024.103939","DOIUrl":null,"url":null,"abstract":"<div><div>During the transition phase when connected and autonomous vehicles (CAVs) and human driven vehicles (HDVs) coexist on the road, it is essential to devise scientific lane management strategies for CAVs in enhancing the operational efficiency of the transportation system (TS). It is worth noting that most current studies do not incorporate the resilience requirements of the TS to effectively respond to seismic events in the planning process. In this study, a novel resilience-based planning optimization methodology through dedicated autonomous vehicle lanes (DAVLs) configuration is proposed in the form of bi-level structure. The optimal configuration scheme for generating DAVLs in the upper level has the optimization objective of minimizing the overall impedance of the TS while meeting the system’s resilience constraints. In terms of the lower level, it quantifies the TS’s functions, fully considering the impact of CAVs on the time value, fuel consumption, and link flow capacity. In order to balance the optimization performance and computational costs, a heuristic algorithm combining genetic algorithms and successive averaging method are integrated to solve the proposed bi-level programming model effectively. On this basis, the proposed methodology adopts a real-world large-scale transportation network regarding deterministic and stochastic earthquake damage scenarios. The sensitivity analysis outcomes show that the market penetration of CAVs and the predefined system resilience threshold have different mechanisms of actions on the optimal configuration strategy of DAVLs and the system performance of TS.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"194 ","pages":"Article 103939"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524005301","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
During the transition phase when connected and autonomous vehicles (CAVs) and human driven vehicles (HDVs) coexist on the road, it is essential to devise scientific lane management strategies for CAVs in enhancing the operational efficiency of the transportation system (TS). It is worth noting that most current studies do not incorporate the resilience requirements of the TS to effectively respond to seismic events in the planning process. In this study, a novel resilience-based planning optimization methodology through dedicated autonomous vehicle lanes (DAVLs) configuration is proposed in the form of bi-level structure. The optimal configuration scheme for generating DAVLs in the upper level has the optimization objective of minimizing the overall impedance of the TS while meeting the system’s resilience constraints. In terms of the lower level, it quantifies the TS’s functions, fully considering the impact of CAVs on the time value, fuel consumption, and link flow capacity. In order to balance the optimization performance and computational costs, a heuristic algorithm combining genetic algorithms and successive averaging method are integrated to solve the proposed bi-level programming model effectively. On this basis, the proposed methodology adopts a real-world large-scale transportation network regarding deterministic and stochastic earthquake damage scenarios. The sensitivity analysis outcomes show that the market penetration of CAVs and the predefined system resilience threshold have different mechanisms of actions on the optimal configuration strategy of DAVLs and the system performance of TS.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.