Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice

IF 10.7 1区 生物学 Q1 CELL BIOLOGY
Pin-Ji Lei, Katarina J. Ruscic, Kangsan Roh, Johanna J. Rajotte, Meghan J. O’Melia, Echoe M. Bouta, Marla Marquez, Ethel R. Pereira, Ashwin S. Kumar, Mohammad S. Razavi, Hengbo Zhou, Lutz Menzel, Liqing Huang, Heena Kumra, Mark Duquette, Peigen Huang, James W. Baish, Lance L. Munn, Natasza A. Kurpios, Jessalyn M. Ubellacker, Timothy P. Padera
{"title":"Aging-induced changes in lymphatic muscle cell transcriptomes are associated with reduced pumping of peripheral collecting lymphatic vessels in mice","authors":"Pin-Ji Lei, Katarina J. Ruscic, Kangsan Roh, Johanna J. Rajotte, Meghan J. O’Melia, Echoe M. Bouta, Marla Marquez, Ethel R. Pereira, Ashwin S. Kumar, Mohammad S. Razavi, Hengbo Zhou, Lutz Menzel, Liqing Huang, Heena Kumra, Mark Duquette, Peigen Huang, James W. Baish, Lance L. Munn, Natasza A. Kurpios, Jessalyn M. Ubellacker, Timothy P. Padera","doi":"10.1016/j.devcel.2024.12.010","DOIUrl":null,"url":null,"abstract":"Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas—including LMCs—of peripheral collecting lymphatic vessels from mice across the lifespan. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and identified a proinflammatory microenvironment that suppresses the contractile apparatus in LMCs from advanced-aged mice. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to improve lymphatic vessel function.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"313 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas—including LMCs—of peripheral collecting lymphatic vessels from mice across the lifespan. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and identified a proinflammatory microenvironment that suppresses the contractile apparatus in LMCs from advanced-aged mice. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to improve lymphatic vessel function.

Abstract Image

衰老诱导的淋巴肌肉细胞转录组的变化与小鼠外周血集淋巴管泵送减少有关
收集淋巴管壁内的淋巴肌细胞(LMCs)表现出强直和自主的阶段性收缩,从而驱动活跃的淋巴运输以维持组织-液体稳态并支持免疫监视。淋巴细胞损伤会破坏淋巴功能,并与多种疾病有关。尽管它们很重要,但关于lmc中的基因转录特征以及它们在正常和疾病情况下与淋巴功能的关系的知识在很大程度上是缺失的。我们已经生成了一个全面的转录单细胞图谱,包括小鼠整个生命周期的外周血淋巴血管的lmc。我们鉴定了将lmc与其他类型肌肉细胞区分开来的基因,表征了衰老血管中lmc的表型和转录组变化,并鉴定了抑制老年小鼠lmc中收缩装置的促炎微环境。我们的发现为加快未来的研究提供了宝贵的资源,以确定lmc的潜在药物靶点,以改善淋巴管功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信