Successive Reactions of Trimethylgermanium Chloride to Achieve > 26% Efficiency MA-Free Perovskite Solar Cell With 3000-Hour Unattenuated Operation

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yong Li, Zhuang Xie, Yuwei Duan, Yongzhe Li, Yiqiao Sun, Chunbo Su, Hongxiang Li, Rui Sun, Minghui Cheng, Hanye Wang, Dongfang Xu, Ke Zhang, Yifan Wang, Hongjie Lei, Qiang Peng, Kunpeng Guo, Shengzhong Liu, Zhike Liu
{"title":"Successive Reactions of Trimethylgermanium Chloride to Achieve > 26% Efficiency MA-Free Perovskite Solar Cell With 3000-Hour Unattenuated Operation","authors":"Yong Li,&nbsp;Zhuang Xie,&nbsp;Yuwei Duan,&nbsp;Yongzhe Li,&nbsp;Yiqiao Sun,&nbsp;Chunbo Su,&nbsp;Hongxiang Li,&nbsp;Rui Sun,&nbsp;Minghui Cheng,&nbsp;Hanye Wang,&nbsp;Dongfang Xu,&nbsp;Ke Zhang,&nbsp;Yifan Wang,&nbsp;Hongjie Lei,&nbsp;Qiang Peng,&nbsp;Kunpeng Guo,&nbsp;Shengzhong Liu,&nbsp;Zhike Liu","doi":"10.1002/adma.202414354","DOIUrl":null,"url":null,"abstract":"<p>The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI<sub>3</sub> precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI. These successive interactions effectively safeguard FA<sup>+</sup> from decomposition, accelerate crystallization, restrict ion migration, and passivate film defects. Thus, a high-quality perovskite is obtained with the super-hydrophobic surface, maintaining the light-active phase (<i>α</i>-phase) even after exposure to high-humidity air (RH: 85%) for 10 days. Consequently, the TGC-treated conventional (n-i-p) and inverted (p-i-n) FACsPbI<sub>3</sub> PSCs achieve 26.03%- and 26.38%- efficiencies, respectively, retaining unattenuated operation initial efficiency after tracking at the maximum power point (MPP) under illumination for 3000 h.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202414354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI3 precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI. These successive interactions effectively safeguard FA+ from decomposition, accelerate crystallization, restrict ion migration, and passivate film defects. Thus, a high-quality perovskite is obtained with the super-hydrophobic surface, maintaining the light-active phase (α-phase) even after exposure to high-humidity air (RH: 85%) for 10 days. Consequently, the TGC-treated conventional (n-i-p) and inverted (p-i-n) FACsPbI3 PSCs achieve 26.03%- and 26.38%- efficiencies, respectively, retaining unattenuated operation initial efficiency after tracking at the maximum power point (MPP) under illumination for 3000 h.

Abstract Image

Abstract Image

三甲基氯化锗连续反应获得> 26%效率无MA钙钛矿太阳能电池3000小时无衰减运行
钙钛矿太阳能电池(PSCs)效率的快速提高表明其具有广阔的商业前景,但钙钛矿的商业化面临复杂的优化过程和稳定性问题。在这项工作中,通过在FACsPbI3前驱体溶液中加入三甲基氯化锗(TGC),开发了一种简单的优化策略。TGC在钙钛矿溶液和钙钛矿膜中触发了连续的相互作用,包括脆弱的Ge─Cl键水解形成Ge─OH基团,然后与FAI形成氢键(O─H··N和O─H··I)。这些连续的相互作用有效地保护FA+不分解,加速结晶,限制离子迁移,钝化膜缺陷。因此,获得了具有超疏水表面的高质量钙钛矿,即使在暴露于高湿空气(RH: 85%) 10天后,也能保持光活性相(α相)。因此,TGC处理的传统(n‐i‐p)和反向(p‐i‐n) FACsPbI3 psc分别达到26.03%和26.38%的效率,在照明3000小时的最大功率点(MPP)跟踪后保持未衰减的运行初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信