Departure from randomness: Evolution of self-replicators that can self-sort through steric zipper formation

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-12-27 DOI:10.1016/j.chempr.2024.11.012
Marcel J. Eleveld, Juntian Wu, Kai Liu, Jim Ottelé, Omer Markovitch, Armin Kiani, Lukas C. Herold, Alessia Lasorsa, Patrick C.A. van der Wel, Sijbren Otto
{"title":"Departure from randomness: Evolution of self-replicators that can self-sort through steric zipper formation","authors":"Marcel J. Eleveld, Juntian Wu, Kai Liu, Jim Ottelé, Omer Markovitch, Armin Kiani, Lukas C. Herold, Alessia Lasorsa, Patrick C.A. van der Wel, Sijbren Otto","doi":"10.1016/j.chempr.2024.11.012","DOIUrl":null,"url":null,"abstract":"Darwinian evolution of self-replicating entities most likely played a key role in the emergence of life from inanimate matter. For evolution to occur, self-replicators must (1) have structural space accessible to them, (2) occupy only part of it at any time, and (3) navigate it through mutation and selection. We describe a system of self-replicating hexameric macrocycles formed upon the mixing of two building blocks and occupying a subset of possible sequences. Specific interactions, most likely through steric zipper formation, favor a hexamer sequence where the two blocks alternate. Under different replication-destruction regimes, distinct replicator mutants are selected. With non-selective destruction (via outflow), the fastest replicators dominate. With chemically mediated, selective destruction, a mutant that balances replication speed and resistance to reduction by steric zipper formation becomes dominant. This system demonstrates a rudimentary form of Darwinian evolution, where replicators adapt to changing selection pressures through mutation and selection.","PeriodicalId":268,"journal":{"name":"Chem","volume":"58 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Darwinian evolution of self-replicating entities most likely played a key role in the emergence of life from inanimate matter. For evolution to occur, self-replicators must (1) have structural space accessible to them, (2) occupy only part of it at any time, and (3) navigate it through mutation and selection. We describe a system of self-replicating hexameric macrocycles formed upon the mixing of two building blocks and occupying a subset of possible sequences. Specific interactions, most likely through steric zipper formation, favor a hexamer sequence where the two blocks alternate. Under different replication-destruction regimes, distinct replicator mutants are selected. With non-selective destruction (via outflow), the fastest replicators dominate. With chemically mediated, selective destruction, a mutant that balances replication speed and resistance to reduction by steric zipper formation becomes dominant. This system demonstrates a rudimentary form of Darwinian evolution, where replicators adapt to changing selection pressures through mutation and selection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信