To be or not to be phosphorylated: Understanding the role of Ebola virus nucleoprotein in the dynamic interplay with the transcriptional activator VP30 and the host phosphatase PP2A-B56.
Lennart Kämper,Ida Kuhl,Melina Vallbracht,Thomas Hoenen,Uwe Linne,Axel Weber,Petr Chlanda,Michael Kracht,Nadine Biedenkopf
{"title":"To be or not to be phosphorylated: Understanding the role of Ebola virus nucleoprotein in the dynamic interplay with the transcriptional activator VP30 and the host phosphatase PP2A-B56.","authors":"Lennart Kämper,Ida Kuhl,Melina Vallbracht,Thomas Hoenen,Uwe Linne,Axel Weber,Petr Chlanda,Michael Kracht,Nadine Biedenkopf","doi":"10.1080/22221751.2024.2447612","DOIUrl":null,"url":null,"abstract":"Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region. This study investigates NP's role in VP30 dephosphorylation and transcription activation, focusing on the spatial requirements of NP's binding sites. Increasing the distance between PP2A-B56 and VP30 at the NP interface revealed that close spatial and orientational contact is necessary for efficient VP30 dephosphorylation and viral transcription. Longer distances were lethal for recombinant EBOV except when a compensatory mutation, NP-T603I, occurred. This mutation, located between the NP binding sites for PP2A-B56 and VP30, fully restored functionality. Mass spectrometry showed that T603 is phosphorylated in recEBOV-NPwt virions. Mutational analysis indicated that T603I facilitates VP30 dephosphorylation in otherwise lethal recEBOV and that dynamic phosphorylation of NP-T603 is important for efficient primary viral transcription in the WT context. These findings emphasize the critical and evolutionarily pressured interplay between VP30 and PP2A-B56 within the NP C-terminal disordered region and highlight the important role of NP on the regulation of viral transcription during the EBOV life cycle.","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":"32 1","pages":"2447612"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2447612","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region. This study investigates NP's role in VP30 dephosphorylation and transcription activation, focusing on the spatial requirements of NP's binding sites. Increasing the distance between PP2A-B56 and VP30 at the NP interface revealed that close spatial and orientational contact is necessary for efficient VP30 dephosphorylation and viral transcription. Longer distances were lethal for recombinant EBOV except when a compensatory mutation, NP-T603I, occurred. This mutation, located between the NP binding sites for PP2A-B56 and VP30, fully restored functionality. Mass spectrometry showed that T603 is phosphorylated in recEBOV-NPwt virions. Mutational analysis indicated that T603I facilitates VP30 dephosphorylation in otherwise lethal recEBOV and that dynamic phosphorylation of NP-T603 is important for efficient primary viral transcription in the WT context. These findings emphasize the critical and evolutionarily pressured interplay between VP30 and PP2A-B56 within the NP C-terminal disordered region and highlight the important role of NP on the regulation of viral transcription during the EBOV life cycle.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.