Modeling Nonlinear Black-Box Conducted Immunity of Mixed Analog-Digital Integrated Circuits Using Particle Swarm Optimization (PSO) and Piecewise Volterra Series

IF 2 3区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xi Chen;Shuguo Xie;Mengyuan Wei;Bing Shao;Yuanyuan Li;Shuling Zhou;Xiaozong Huang;Xiaoqiang Yang;Wenshuang Yi;Xiaokang Wen
{"title":"Modeling Nonlinear Black-Box Conducted Immunity of Mixed Analog-Digital Integrated Circuits Using Particle Swarm Optimization (PSO) and Piecewise Volterra Series","authors":"Xi Chen;Shuguo Xie;Mengyuan Wei;Bing Shao;Yuanyuan Li;Shuling Zhou;Xiaozong Huang;Xiaoqiang Yang;Wenshuang Yi;Xiaokang Wen","doi":"10.1109/TEMC.2024.3516496","DOIUrl":null,"url":null,"abstract":"This article addresses the challenge of modeling the conducted immunity of mixed analog-digital integrated Circuits under electromagnetic interference (EMI). We propose a black-box modeling method, integrated circuits for RF immunity behavioral simulation—conducted immunity modeling using particle swarm optimization and piecewise Volterra series [ICIM-CI(PSVIB)]. This method leverages particle swarm optimization (PSO) and piecewise Volterra Series to enhance the immunity behavior module of the ICIM-CI model, aimed at simulating RF immunity in integrated circuits for conducted immunity scenarios. The proposed model accurately describes the nonlinear behavior of integrated circuits using the piecewise Volterra series and significantly improves model accuracy and generality by optimizing the segmentation threshold with the PSO algorithm. This approach overcomes the limitations of traditional ICIM-CI models, which assume linearity and thus struggle to precisely capture the nonlinear response of mixed analog-digital integrated circuits under EMI. Additionally, the proposed model addresses deficiencies in quantitative sensitivity analysis, output of quantitative information, and parametric cascade simulation. Experimental results demonstrate that the ICIM-CI (PSVIB) model provides accurate quantitative sensitivity analysis, outputs comprehensive quantitative information, supports parametric cascade simulation, and exhibits high generality. Compared to the traditional ICIM-CI model, the normalized mean square error of broadband modeling improves by at least 7.3 dB.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 2","pages":"510-520"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816010/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the challenge of modeling the conducted immunity of mixed analog-digital integrated Circuits under electromagnetic interference (EMI). We propose a black-box modeling method, integrated circuits for RF immunity behavioral simulation—conducted immunity modeling using particle swarm optimization and piecewise Volterra series [ICIM-CI(PSVIB)]. This method leverages particle swarm optimization (PSO) and piecewise Volterra Series to enhance the immunity behavior module of the ICIM-CI model, aimed at simulating RF immunity in integrated circuits for conducted immunity scenarios. The proposed model accurately describes the nonlinear behavior of integrated circuits using the piecewise Volterra series and significantly improves model accuracy and generality by optimizing the segmentation threshold with the PSO algorithm. This approach overcomes the limitations of traditional ICIM-CI models, which assume linearity and thus struggle to precisely capture the nonlinear response of mixed analog-digital integrated circuits under EMI. Additionally, the proposed model addresses deficiencies in quantitative sensitivity analysis, output of quantitative information, and parametric cascade simulation. Experimental results demonstrate that the ICIM-CI (PSVIB) model provides accurate quantitative sensitivity analysis, outputs comprehensive quantitative information, supports parametric cascade simulation, and exhibits high generality. Compared to the traditional ICIM-CI model, the normalized mean square error of broadband modeling improves by at least 7.3 dB.
基于粒子群算法和分段Volterra级数的混合模数集成电路非线性黑盒传导抗扰度建模
本文讨论了模拟-数字混合集成电路在电磁干扰(EMI)下的传导抗扰度建模问题。我们提出了一种黑盒建模方法,用于射频免疫行为模拟的集成电路——利用粒子群优化和分段Volterra序列进行免疫建模[ICIM-CI(PSVIB)]。该方法利用粒子群优化(PSO)和分段Volterra Series来增强ICIM-CI模型的免疫行为模块,旨在模拟集成电路中的射频免疫,用于传导免疫场景。该模型利用分段Volterra级数准确地描述了集成电路的非线性行为,并通过粒子群算法优化分割阈值,显著提高了模型的准确性和通用性。这种方法克服了传统的ICIM-CI模型的局限性,传统的ICIM-CI模型假设线性,因此难以精确捕捉EMI下混合模拟-数字集成电路的非线性响应。此外,该模型还解决了定量敏感性分析、定量信息输出和参数级联模拟方面的不足。实验结果表明,ICIM-CI (PSVIB)模型提供了准确的定量灵敏度分析,输出了全面的定量信息,支持参数级联仿真,具有较高的通用性。与传统的ICIM-CI模型相比,宽带模型的归一化均方误差至少提高了7.3 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
19.00%
发文量
235
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信