Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sohee Lim, Hyun Joo Chung, Yoo Jin Oh, Peter Hinterdorfer, Soon Chul Myung, Young-Jin Seo, Kisung Ko
{"title":"Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system","authors":"Sohee Lim, Hyun Joo Chung, Yoo Jin Oh, Peter Hinterdorfer, Soon Chul Myung, Young-Jin Seo, Kisung Ko","doi":"10.1111/pbi.14552","DOIUrl":null,"url":null,"abstract":"Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in <i>Nicotiana tabacum</i>. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via <i>Agrobacterium</i>-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS–PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8<sup>+</sup> cytotoxic T cells, CD4<sup>+</sup> helper T cells and B cells, particularly with EpCAM-FcK<sup>P</sup> and EpCAM-Fc<sup>P</sup> (FcK<sup>P</sup>) × J<sup>P</sup> (JK<sup>P</sup>). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial–mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that <i>N. tabacum</i> can produce effective vaccine candidates to induce anti-cancer immune responses.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"127 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14552","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS–PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial–mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
修饰fc融合蛋白结构增强肿瘤疫苗在植物表达系统中的效能
在烟草中表达与IgG、IgA和IgM Fc结构域融合的上皮细胞粘附分子(Epithelial cell adhesion molecule, EpCAM),制备IgG、IgA和IgM样结构域作为抗癌疫苗。通过在Fc结构域(FcK)上添加一个c端内质网(ER)保留基序(KDEL),在转基因植物中通过农杆菌介导的转化产生EpCAM-Fc和EpCAM-FcK蛋白,从而产生高甘露糖聚糖结构。EpCAM-Fc (FcK)转基因植株与连接链(J-chain, J和JK)转基因植株交叉受精后,EpCAM-IgA Fc (EpCAM-A)和igm样蛋白(EpCAM-M)稳定表达。免疫印迹、SDS-PAGE和ELISA分析表明,含有KDEL的蛋白具有更高的表达水平和抗epcam igg的结合活性。融合蛋白中IgM结合最强,其次是IgA和IgG。用这些疫苗免疫的BALB/c小鼠血清产生抗epcam igg。流式细胞术显示,EpCAM-Fc融合蛋白显著激活CD8+细胞毒性T细胞、CD4+辅助性T细胞和B细胞,特别是EpCAM-FcKP和EpCAM-FcP (FcKP) × JP (JKP)。诱导的抗epcam igg捕获人前列腺癌PC-3和结直肠癌SW620细胞。免疫小鼠血清抑制癌细胞增殖、迁移和侵袭;下调增殖标志物(PCNA、Ki-67)和上皮-间质转化标志物(Vimentin);e -钙粘蛋白上调。这些发现表明,烟草可产生有效的候选疫苗来诱导抗癌免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信