Simultaneous High Current Density and Selective Electrocatalytic CO2-to-CH4 through Intermediate Balancing

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuqi Hu, Yumo Chen, Zhiyuan Zhang, Heming Liu, Xin Kang, Jiarong Liu, Shanlin Li, Yuting Luo, Bilu Liu
{"title":"Simultaneous High Current Density and Selective Electrocatalytic CO2-to-CH4 through Intermediate Balancing","authors":"Shuqi Hu,&nbsp;Yumo Chen,&nbsp;Zhiyuan Zhang,&nbsp;Heming Liu,&nbsp;Xin Kang,&nbsp;Jiarong Liu,&nbsp;Shanlin Li,&nbsp;Yuting Luo,&nbsp;Bilu Liu","doi":"10.1002/anie.202423915","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of CO<sub>2</sub> to CH<sub>4</sub> is promising for carbon neutrality and renewable energy storage but confronts low CH<sub>4</sub> selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C−C coupling and H−H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu−N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H. A fast CO<sub>2</sub>-to-CH<sub>4</sub> conversion rate of 3.14 mmol cm<sup>−2</sup> h<sup>−1</sup> is achieved at 1,300 mA cm<sup>−2</sup> with a Faradaic efficiency of 51.7 %. In situ spectroscopy and theoretical calculations show that the increased Cu−Cu distance in the Cu−N coordination polymer component favors multistep *CO hydrogenation over the dimerization, and the CuO component ensures an adequate supply of *H, together contributing to the selective CO<sub>2</sub>-to-CH<sub>4</sub> conversion at high current densities. This work develops a cooperative strategy for the electrosynthesis of CH<sub>4</sub> with simultaneous high current density and high selectivity by rational catalyst design, paving the way for its applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 12","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423915","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of CO2 to CH4 is promising for carbon neutrality and renewable energy storage but confronts low CH4 selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C−C coupling and H−H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu−N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H. A fast CO2-to-CH4 conversion rate of 3.14 mmol cm−2 h−1 is achieved at 1,300 mA cm−2 with a Faradaic efficiency of 51.7 %. In situ spectroscopy and theoretical calculations show that the increased Cu−Cu distance in the Cu−N coordination polymer component favors multistep *CO hydrogenation over the dimerization, and the CuO component ensures an adequate supply of *H, together contributing to the selective CO2-to-CH4 conversion at high current densities. This work develops a cooperative strategy for the electrosynthesis of CH4 with simultaneous high current density and high selectivity by rational catalyst design, paving the way for its applications.

Abstract Image

同时高电流密度和选择性电催化二氧化碳到ch4通过中间平衡
电化学将CO2还原为CH4在碳中和和可再生能源储存方面有前景,但CH4的选择性较低,特别是在高电流密度下。关键的挑战在于促进*CO中间体和*H的偶联,同时尽量减少包括C-C偶联或H-H偶联在内的副反应,由于中间体丰富,这在高电流密度下尤其困难。本文报道了一种利用Cu-N配位聚合物和CuO组分组成的cu基催化剂来解决这一挑战的合作策略,该催化剂可以同时管理关键中间体*CO和*H。在1300 mA cm-2条件下,CO2-to-CH4的快速转化率为3.14 mmol cm-2 h-1,法拉第效率为51.7%。原位光谱和理论计算表明,Cu-N配位聚合物组分中Cu-Cu距离的增加有利于多步*CO加氢而不是二聚化,CuO组分保证了足够的*H供应,共同促进了高电流密度下co2到ch4的选择性转化。本工作通过合理的催化剂设计,开发了一种同时具有高电流密度和高选择性的CH4电合成协同策略,为其应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信