Pathogen-Specific Electrochemical Real-Time LAMP Detection Using Universal Solid-Phase Probes on Carbon Electrodes

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Martin Trotter, Andreas Schreiber, Dominic Kleinknecht, Zahra Bagherian, Felix von Stetten, Nadine Borst
{"title":"Pathogen-Specific Electrochemical Real-Time LAMP Detection Using Universal Solid-Phase Probes on Carbon Electrodes","authors":"Martin Trotter, Andreas Schreiber, Dominic Kleinknecht, Zahra Bagherian, Felix von Stetten, Nadine Borst","doi":"10.1021/acssensors.4c02492","DOIUrl":null,"url":null,"abstract":"Epidemic infections and spreading antibiotic resistance require diagnostic tests that can be rapidly adopted. To reduce the usually time-consuming adaptation of molecular diagnostic tests to changing targets, we propose the novel approach of a repurposable sensing electrode functionalization with a universal, target-independent oligonucleotide probe. In the liquid phase covering the electrode, the target sequence is amplified by MD LAMP (mediator-displacement loop-mediated isothermal amplification) releasing a generic methylene blue-labeled mediator, which specifically hybridizes to the solid-phase probe. To demonstrate the universality of the approach, two different pathogens, <i>Staphylococcus aureus</i> (crude lysate) and <i>Treponema pallidum</i>, are detected using the same solid-phase probe. The reactions reach a limit of detection of 1 × 10<sup>3</sup> and 4 × 10<sup>2</sup> copies per reaction within 30 min, respectively. The solid-phase probes carry a carboxymethyl aniline modification to form covalent C–C bonds on low-cost carbon electrodes. Maximum surface coverage and maximum hybridization signals are observed at grafting concentrations of ≥2 μM solid-phase probes. Successful detection of spiked target DNA in real swab samples and with three different commercial amplification buffers proved the broad applicability of this assay approach. The electrochemical MD LAMP is fast, compatible with dsDNA targets, and requires only minimal adaptation of an established amplification method. It is easily transferable to existing analytical electrochemical platforms, allowing the consumable to be synergistically used for different targets. The suggested approach of repurposable functionalized electrodes can also be considered to increase the preparedness for future epidemic or pandemic outbreaks as well as rapidly evolving resistance patterns or variants.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"11 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02492","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Epidemic infections and spreading antibiotic resistance require diagnostic tests that can be rapidly adopted. To reduce the usually time-consuming adaptation of molecular diagnostic tests to changing targets, we propose the novel approach of a repurposable sensing electrode functionalization with a universal, target-independent oligonucleotide probe. In the liquid phase covering the electrode, the target sequence is amplified by MD LAMP (mediator-displacement loop-mediated isothermal amplification) releasing a generic methylene blue-labeled mediator, which specifically hybridizes to the solid-phase probe. To demonstrate the universality of the approach, two different pathogens, Staphylococcus aureus (crude lysate) and Treponema pallidum, are detected using the same solid-phase probe. The reactions reach a limit of detection of 1 × 103 and 4 × 102 copies per reaction within 30 min, respectively. The solid-phase probes carry a carboxymethyl aniline modification to form covalent C–C bonds on low-cost carbon electrodes. Maximum surface coverage and maximum hybridization signals are observed at grafting concentrations of ≥2 μM solid-phase probes. Successful detection of spiked target DNA in real swab samples and with three different commercial amplification buffers proved the broad applicability of this assay approach. The electrochemical MD LAMP is fast, compatible with dsDNA targets, and requires only minimal adaptation of an established amplification method. It is easily transferable to existing analytical electrochemical platforms, allowing the consumable to be synergistically used for different targets. The suggested approach of repurposable functionalized electrodes can also be considered to increase the preparedness for future epidemic or pandemic outbreaks as well as rapidly evolving resistance patterns or variants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信