Selective Photocatalysis of Benzyl Alcohol Valorization by Cocatalyst Engineering Over Zn2In2S5 Nanosheets

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ran Wang, Li Shi, Elena Yu. Konysheva, Xiaoxiang Xu
{"title":"Selective Photocatalysis of Benzyl Alcohol Valorization by Cocatalyst Engineering Over Zn2In2S5 Nanosheets","authors":"Ran Wang, Li Shi, Elena Yu. Konysheva, Xiaoxiang Xu","doi":"10.1002/adfm.202418074","DOIUrl":null,"url":null,"abstract":"Photocatalytic conversion of benzyl alcohol (BA) is a promising means to coproduce H<jats:sub>2</jats:sub> with value‐added chemicals. However, there is a lack of an efficient strategy to regulate the selectivity of the BA conversion products. Here, by a simple cocatalyst engineering technique, the selective conversion of BA over Zn<jats:sub>2</jats:sub>In<jats:sub>2</jats:sub>S<jats:sub>5</jats:sub> nanosheets (ZIS) is maneuvered. Two types of cocatalysts, i.e., Pt and Cd, are photo‐deposited onto ZIS that can shift the selectivity to diverse products, namely, Pt to benzaldehyde (BAD) and Cd to the carbon‐carbon (C─C) coupling compounds. Mechanistic studies indicate that Cd has a high reducing capacity to convert BAD back to the ketyl radical (C<jats:sub>𝛼</jats:sub> radical), favoring the construction of the C─C bonds. Pt, however, facilitates the generation of C<jats:sub>𝛼</jats:sub> radicals but is energetically unfavorable for their coupling reactions, resulting in the generation of BAD as the main product. Theoretical calculation reveals that the distinct catalytic behaviors of Pt and Cd stem from their different electronic structures that govern the adsorption strength to the reaction intermediates and the reaction energy barriers of the C─C coupling step. This work not only addresses the challenge of selectivity regulation for BA conversion but also brings fresh mechanistic insights into the role of the cocatalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"58 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic conversion of benzyl alcohol (BA) is a promising means to coproduce H2 with value‐added chemicals. However, there is a lack of an efficient strategy to regulate the selectivity of the BA conversion products. Here, by a simple cocatalyst engineering technique, the selective conversion of BA over Zn2In2S5 nanosheets (ZIS) is maneuvered. Two types of cocatalysts, i.e., Pt and Cd, are photo‐deposited onto ZIS that can shift the selectivity to diverse products, namely, Pt to benzaldehyde (BAD) and Cd to the carbon‐carbon (C─C) coupling compounds. Mechanistic studies indicate that Cd has a high reducing capacity to convert BAD back to the ketyl radical (C𝛼 radical), favoring the construction of the C─C bonds. Pt, however, facilitates the generation of C𝛼 radicals but is energetically unfavorable for their coupling reactions, resulting in the generation of BAD as the main product. Theoretical calculation reveals that the distinct catalytic behaviors of Pt and Cd stem from their different electronic structures that govern the adsorption strength to the reaction intermediates and the reaction energy barriers of the C─C coupling step. This work not only addresses the challenge of selectivity regulation for BA conversion but also brings fresh mechanistic insights into the role of the cocatalysts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信