Resonant Quantum Magnetodielectric Effect in Multiferroic Metal–Organic Framework [CH3NH3]Co(HCOO)3

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-26 DOI:10.1002/smll.202409564
Na Su, Shuang Liu, Yingjie He, Yan Liu, Huixia Fu, Yi-Sheng Chai, Young Sun
{"title":"Resonant Quantum Magnetodielectric Effect in Multiferroic Metal–Organic Framework [CH3NH3]Co(HCOO)3","authors":"Na Su,&nbsp;Shuang Liu,&nbsp;Yingjie He,&nbsp;Yan Liu,&nbsp;Huixia Fu,&nbsp;Yi-Sheng Chai,&nbsp;Young Sun","doi":"10.1002/smll.202409564","DOIUrl":null,"url":null,"abstract":"<p>The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal–organic framework [CH<sub>3</sub>NH<sub>3</sub>]Co(HCOO)<sub>3</sub>.is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co<sup>2+</sup>) magnets. Subsequently, a stair-shaped magnetic hysteresis loop along the [101] direction characterizing the RQTM appears below the magnetic blocking temperature. More interestingly, the magnetic field dependence of dielectric permittivity exhibits pronounced peaks at the critical fields corresponding to the RQTM, a phenomenon termed the RQMD effect which enables electrical detection of the RQTM. The magnetostriction shows a similar behavior to the magnetodielectric effect at 2 and 5 K, which suggests that the magnetodielectric effect in this multiferroic metal–organic framework is related to the spin-lattice coupling.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 6","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409564","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal–organic framework [CH3NH3]Co(HCOO)3.is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co2+) magnets. Subsequently, a stair-shaped magnetic hysteresis loop along the [101] direction characterizing the RQTM appears below the magnetic blocking temperature. More interestingly, the magnetic field dependence of dielectric permittivity exhibits pronounced peaks at the critical fields corresponding to the RQTM, a phenomenon termed the RQMD effect which enables electrical detection of the RQTM. The magnetostriction shows a similar behavior to the magnetodielectric effect at 2 and 5 K, which suggests that the magnetodielectric effect in this multiferroic metal–organic framework is related to the spin-lattice coupling.

Abstract Image

多铁金属-有机骨架[CH3NH3]Co(HCOO)3的共振量子磁介电效应
钙钛矿多铁金属-有机骨架[CH3NH3]Co(HCOO)3中磁化共振量子隧穿(RQTM)和共振量子磁介电(RQMD)效应的观察据报道。由于氢键修饰的远程超交换相互作用,在低温下出现了本征磁相分离,导致倾斜反铁磁有序体和单离子(Co2+)磁体共存。随后,在磁阻塞温度以下,沿着表征RQTM的[101]方向出现阶梯形磁滞回线。更有趣的是,介质介电常数的磁场依赖性在对应于RQTM的临界场处表现出明显的峰值,这种现象被称为RQMD效应,可以对RQTM进行电检测。在2 K和5 K时,磁致伸缩表现出与磁介电效应相似的行为,这表明该多铁性金属-有机骨架中的磁介电效应与自旋晶格耦合有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信