Fast-charging high-entropy O3-type layered cathodes for sodium-ion batteries

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Wendi Dong, Langyuan Wu, Bowen Liu, Zhenxiao Ling, Xiaodong Qi, Zengjie Fan, Chaogen Hu, Yi Wang, Doron Aurbach, Xiaogang Zhang
{"title":"Fast-charging high-entropy O3-type layered cathodes for sodium-ion batteries","authors":"Wendi Dong, Langyuan Wu, Bowen Liu, Zhenxiao Ling, Xiaodong Qi, Zengjie Fan, Chaogen Hu, Yi Wang, Doron Aurbach, Xiaogang Zhang","doi":"10.1016/j.cej.2024.158997","DOIUrl":null,"url":null,"abstract":"Sodium-ion batteries (SIBs) are considered as the most promising complementary energy storage system for large-scale application due to the high abundance of sodium. However, the irreversible phase transition and slow diffusion kinetics in O3-type layered transition metals oxides cathodes impede the development of advanced SIBs. Here we address this issue by introducing high-entropy doping regulation strategies, a series of NaNi<sub>0.4</sub>Mn<sub>0.3-x</sub>Fe<sub>0.1</sub>Ti<sub>0.1</sub>Sn<sub>x</sub>Li<sub>0.05</sub>Sb<sub>0.05</sub>O<sub>2</sub> cathodes exhibit an excellent rate performance (&gt;60 mAh/g at 6 A/g) and prolonged cycle performance (capacity retention &gt;80 % after 300 cycles, at 120 mA/g). The correlations between the chemical compositions and the electrochemical properties in the designed high-entropy transition metal oxides cathodes were elucidated using a combination of analytical tools including all kinds of electrochemical techniques including galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculations, in conjunction with in-situ X-ray diffraction (XRD). These studies revealed a P3-phase dominated solid-solution reaction during the charge/discharge process that boosts the sodium ions migration in the structure. This study provides a model for effective simultaneous electrochemical evaluation and structure evolution analysis of the multi-elements high-entropy metal oxide cathodes. The understanding gained, enables to apply a successful doping regulation procedure, thus paving the way for a rational design of optimal high-entropy multi-component NaTMO<sub>2</sub> cathodes for rechargeable Na ions batteries.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"22 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158997","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) are considered as the most promising complementary energy storage system for large-scale application due to the high abundance of sodium. However, the irreversible phase transition and slow diffusion kinetics in O3-type layered transition metals oxides cathodes impede the development of advanced SIBs. Here we address this issue by introducing high-entropy doping regulation strategies, a series of NaNi0.4Mn0.3-xFe0.1Ti0.1SnxLi0.05Sb0.05O2 cathodes exhibit an excellent rate performance (>60 mAh/g at 6 A/g) and prolonged cycle performance (capacity retention >80 % after 300 cycles, at 120 mA/g). The correlations between the chemical compositions and the electrochemical properties in the designed high-entropy transition metal oxides cathodes were elucidated using a combination of analytical tools including all kinds of electrochemical techniques including galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) calculations, in conjunction with in-situ X-ray diffraction (XRD). These studies revealed a P3-phase dominated solid-solution reaction during the charge/discharge process that boosts the sodium ions migration in the structure. This study provides a model for effective simultaneous electrochemical evaluation and structure evolution analysis of the multi-elements high-entropy metal oxide cathodes. The understanding gained, enables to apply a successful doping regulation procedure, thus paving the way for a rational design of optimal high-entropy multi-component NaTMO2 cathodes for rechargeable Na ions batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信