Nanozymes and Their Potential Roles in the Origin of Life

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Long Ma, Zimo Liang, Yinyin Hou, Ruofei Zhang, Kelong Fan, Xiyun Yan
{"title":"Nanozymes and Their Potential Roles in the Origin of Life","authors":"Long Ma, Zimo Liang, Yinyin Hou, Ruofei Zhang, Kelong Fan, Xiyun Yan","doi":"10.1002/adma.202412211","DOIUrl":null,"url":null,"abstract":"The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process. However, the harsh reaction conditions of inorganic minerals hinder the accumulation of organic molecules, preventing the efficient transition from inorganic molecules to biomacromolecules. Given the inherent physicochemical properties and enzyme‐like activities, this study proposes that nanozymes, nanomaterials with enzyme‐like activities, act as efficient prebiotic catalysts in the origin of life. This hypothesis is based on the following: First, unlike traditional minerals, nanominerals can catalyze organic synthesis under milder conditions. Second, nanominerals can not only protect biomolecules from radiation damage but also catalyze polymerization reactions to form functional biomacromolecules and further lipid vesicles. More importantly, nanominerals are abundant in terrestrial and extraterrestrial environments. This perspective will systematically discuss the potential roles of nanozymes in the emergence of life based on the functions of minerals and the characteristics of nanozymes. We hope the research on nanozymes and the origin of life will bridge the gap between inorganic precursors and biomolecules under primitive environments.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"12 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412211","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process. However, the harsh reaction conditions of inorganic minerals hinder the accumulation of organic molecules, preventing the efficient transition from inorganic molecules to biomacromolecules. Given the inherent physicochemical properties and enzyme‐like activities, this study proposes that nanozymes, nanomaterials with enzyme‐like activities, act as efficient prebiotic catalysts in the origin of life. This hypothesis is based on the following: First, unlike traditional minerals, nanominerals can catalyze organic synthesis under milder conditions. Second, nanominerals can not only protect biomolecules from radiation damage but also catalyze polymerization reactions to form functional biomacromolecules and further lipid vesicles. More importantly, nanominerals are abundant in terrestrial and extraterrestrial environments. This perspective will systematically discuss the potential roles of nanozymes in the emergence of life based on the functions of minerals and the characteristics of nanozymes. We hope the research on nanozymes and the origin of life will bridge the gap between inorganic precursors and biomolecules under primitive environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信