A Physically‐Based Machine Learning Approach Inspires an Analytical Model for Spider Silk Supercontraction

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vincenzo Fazio, Ali D. Malay, Keiji Numata, Nicola M. Pugno, Giuseppe Puglisi
{"title":"A Physically‐Based Machine Learning Approach Inspires an Analytical Model for Spider Silk Supercontraction","authors":"Vincenzo Fazio, Ali D. Malay, Keiji Numata, Nicola M. Pugno, Giuseppe Puglisi","doi":"10.1002/adfm.202420095","DOIUrl":null,"url":null,"abstract":"Scientific and industrial interest in spider silk stems from its remarkable properties, including supercontraction—an activation effect induced by wetting. Understanding the underlying molecular scale mechanisms is then also crucial for biomimetic applications. In this study, it is illustrated how the effective integration of physically‐based machine learning with scientific interpretations can lead to significant physical insights and enhance the predictive power of an existing microstructure‐inspired model. A symbolic data modeling technique, known as Evolutionary Polynomial Regression (EPR), is employed, which integrates regression capabilities with the genetic programming paradigm, enabling the derivation of explicit analytical formulas for deducing structure‐function relationships emerging across different scales, to investigate the impact of protein primary structures on supercontraction. This analysis is based on recent multiscale experimental data encompassing a diverse range of scales and a wide variety of different spider silks. Specifically, this analysis reveals a correlation between supercontraction and the repeat length of the MaSp2 protein as well as the polyalanine region of MaSp1. Straightforward microstructural interpretations that align with experimental observations are proposed. The MaSp2 repeat length governs the cross‐links that stabilize amorphous chains in dry conditions. When hydrated, these cross‐links are disrupted, leading to entropic coiling and fiber contraction. Furthermore, the length of the polyalanine region in MaSp1 plays a critical role in supercontraction by restricting the extent of crystal misalignment necessary to accommodate the shortening of the soft regions. The validation of the model is accomplished by comparing experimental data from the Silkome database with theoretical predictions derived from both the machine learning and the proposed model. The enhanced model offers a more comprehensive understanding of supercontraction and establishes a link between the primary structure of silk proteins and their macroscopic behavior, thereby advancing the field of biomimetic applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"20 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420095","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific and industrial interest in spider silk stems from its remarkable properties, including supercontraction—an activation effect induced by wetting. Understanding the underlying molecular scale mechanisms is then also crucial for biomimetic applications. In this study, it is illustrated how the effective integration of physically‐based machine learning with scientific interpretations can lead to significant physical insights and enhance the predictive power of an existing microstructure‐inspired model. A symbolic data modeling technique, known as Evolutionary Polynomial Regression (EPR), is employed, which integrates regression capabilities with the genetic programming paradigm, enabling the derivation of explicit analytical formulas for deducing structure‐function relationships emerging across different scales, to investigate the impact of protein primary structures on supercontraction. This analysis is based on recent multiscale experimental data encompassing a diverse range of scales and a wide variety of different spider silks. Specifically, this analysis reveals a correlation between supercontraction and the repeat length of the MaSp2 protein as well as the polyalanine region of MaSp1. Straightforward microstructural interpretations that align with experimental observations are proposed. The MaSp2 repeat length governs the cross‐links that stabilize amorphous chains in dry conditions. When hydrated, these cross‐links are disrupted, leading to entropic coiling and fiber contraction. Furthermore, the length of the polyalanine region in MaSp1 plays a critical role in supercontraction by restricting the extent of crystal misalignment necessary to accommodate the shortening of the soft regions. The validation of the model is accomplished by comparing experimental data from the Silkome database with theoretical predictions derived from both the machine learning and the proposed model. The enhanced model offers a more comprehensive understanding of supercontraction and establishes a link between the primary structure of silk proteins and their macroscopic behavior, thereby advancing the field of biomimetic applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信