Bo Chen, Qi Chen, Haodong Zhang, Donghui Zhang, Cuidi Li, Ke Ma, Mengyue Dou, William Weijia Lu, Jin Qi, Lianfu Deng, Runhui Liu, Wenguo Cui
{"title":"3D‐Printed Dual‐Bionic Scaffolds to Promote Osteoconductivity and Angiogenesis for Large Segment Bone Restoration","authors":"Bo Chen, Qi Chen, Haodong Zhang, Donghui Zhang, Cuidi Li, Ke Ma, Mengyue Dou, William Weijia Lu, Jin Qi, Lianfu Deng, Runhui Liu, Wenguo Cui","doi":"10.1002/adfm.202422691","DOIUrl":null,"url":null,"abstract":"Large segment bone defects pose a significant challenge in the field of orthopedic surgery, requiring effective and innovative approaches for restoration. However, many existing scaffolds are bioinert and do not support crucial processes such as cell adhesion, proliferation, and vascularization. In this study, a dual‐bionic 3D printing bredigite scaffold is developed, featuring a combination of physical structure and bioactive functions. Specifically, the structure‐mimetic scaffold has an isotropic single‐cell structure suitable for defects with varying load‐bearing requirements and allowing the ingrowth of vessels and bone. Meanwhile, an extracellular matrix peptide‐mimetic β‐amino acid polymer DM<jats:sub>50</jats:sub>CO<jats:sub>50</jats:sub> and deferoxamine are modified onto the scaffold simultaneously to promote the adhesion of bone marrow mesenchymal stem cells and vascularization. The dual‐bionic scaffolds demonstrate outstanding osteogenic and angiogenic properties in a rat model with large segment bone defects to promote bone restoration, implying a promising strategy in designing scaffolds to promote osteoconductivity and angiogenesis for large segment bone restoration.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"47 20 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422691","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Large segment bone defects pose a significant challenge in the field of orthopedic surgery, requiring effective and innovative approaches for restoration. However, many existing scaffolds are bioinert and do not support crucial processes such as cell adhesion, proliferation, and vascularization. In this study, a dual‐bionic 3D printing bredigite scaffold is developed, featuring a combination of physical structure and bioactive functions. Specifically, the structure‐mimetic scaffold has an isotropic single‐cell structure suitable for defects with varying load‐bearing requirements and allowing the ingrowth of vessels and bone. Meanwhile, an extracellular matrix peptide‐mimetic β‐amino acid polymer DM50CO50 and deferoxamine are modified onto the scaffold simultaneously to promote the adhesion of bone marrow mesenchymal stem cells and vascularization. The dual‐bionic scaffolds demonstrate outstanding osteogenic and angiogenic properties in a rat model with large segment bone defects to promote bone restoration, implying a promising strategy in designing scaffolds to promote osteoconductivity and angiogenesis for large segment bone restoration.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.