Long Hu, Tao Wan, Xinwei Guan, Zhi Li, Tingting Mei, Beining Dong, Liang Gao, Chao Chen, Xiaoning Li, Chun‐Ho Lin, Mengyao Li, Fandi Chen, Dawei Su, Zhaojun Han, Haolan Xu, Shujuan Huang, Shuhua Peng, Tom Wu, Dewei Chu
{"title":"Ligand Engineering Enables Bifacial PbS All‐QD Homojunction Photodiodes","authors":"Long Hu, Tao Wan, Xinwei Guan, Zhi Li, Tingting Mei, Beining Dong, Liang Gao, Chao Chen, Xiaoning Li, Chun‐Ho Lin, Mengyao Li, Fandi Chen, Dawei Su, Zhaojun Han, Haolan Xu, Shujuan Huang, Shuhua Peng, Tom Wu, Dewei Chu","doi":"10.1002/adfm.202419316","DOIUrl":null,"url":null,"abstract":"Infrared PbS quantum dot (QD) photodiodes play a vital role in various applications, including photovoltaics, light‐emitting diodes, lasers, and photodetectors. Despite their superior potential, high‐performance all‐QD homojunction photodiodes with bifacial structures have yet to be reported. Here, post‐treatment ligand engineering is successfully employed to precisely tune the doping dipoles of PbS QDs, transitioning them from n‐type, through intrinsic, to p‐type. All‐QD homojunction photodiodes solar cells with a n‐i‐p architecture are constructed by integrating three types of PbS QD layers of 1.37 eV bandgaps with controllable doping dipoles, which delivers a power conversion efficiency of 10.0%, among the highest values reported in PbS all‐QD homojunction solar cells so far. Owing to symmetry all‐QD architecture, bifacial PbS all‐QDs photodiodes, using 1.37 eV bandgap PbS QDs as both n‐type and p‐type charge transport layers and 0.90 eV bandgap PbS QDs as intrinsic light absorber layers, achieved an almost ideal bifactor approaching 93% and decent detectivities of 1.63 × 10<jats:sup>11</jats:sup> Jones from ITO illumination and 1.86 × 10<jats:sup>11</jats:sup> Jones from silver nanowire (Ag NW) illumination at 1370 nm. Therefore, this work provides a facile approach for the design of bifacial all‐QD homojunction photodiodes, broadening their potential applications in advanced QD optoelectronic systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"25 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419316","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared PbS quantum dot (QD) photodiodes play a vital role in various applications, including photovoltaics, light‐emitting diodes, lasers, and photodetectors. Despite their superior potential, high‐performance all‐QD homojunction photodiodes with bifacial structures have yet to be reported. Here, post‐treatment ligand engineering is successfully employed to precisely tune the doping dipoles of PbS QDs, transitioning them from n‐type, through intrinsic, to p‐type. All‐QD homojunction photodiodes solar cells with a n‐i‐p architecture are constructed by integrating three types of PbS QD layers of 1.37 eV bandgaps with controllable doping dipoles, which delivers a power conversion efficiency of 10.0%, among the highest values reported in PbS all‐QD homojunction solar cells so far. Owing to symmetry all‐QD architecture, bifacial PbS all‐QDs photodiodes, using 1.37 eV bandgap PbS QDs as both n‐type and p‐type charge transport layers and 0.90 eV bandgap PbS QDs as intrinsic light absorber layers, achieved an almost ideal bifactor approaching 93% and decent detectivities of 1.63 × 1011 Jones from ITO illumination and 1.86 × 1011 Jones from silver nanowire (Ag NW) illumination at 1370 nm. Therefore, this work provides a facile approach for the design of bifacial all‐QD homojunction photodiodes, broadening their potential applications in advanced QD optoelectronic systems.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.