Hyeonji Lee, Jungyeop Oh, Wonbae Ahn, Mingu Kang, Seohak Park, Hyunmin Kim, Seungsun Yoo, Byung Chul Jang, Sung‐Yool Choi
{"title":"Enhancing Computing Capacity via Reconfigurable MoS2‐Based Artificial Synapse with Dual Feature Strategy for Wide Reservoir Computing","authors":"Hyeonji Lee, Jungyeop Oh, Wonbae Ahn, Mingu Kang, Seohak Park, Hyunmin Kim, Seungsun Yoo, Byung Chul Jang, Sung‐Yool Choi","doi":"10.1002/adfm.202416811","DOIUrl":null,"url":null,"abstract":"Reservoir computing (RC) has garnered considerable interest owing to its uncomplicated network structure and minimal training costs. Nevertheless, the computing capacity of RC systems is limited by the material‐dependent physical dynamics of reservoir devices. In this study, an efficient neuromorphic reservoir device with adjustable reservoir states, achieved through the development of an electrically tunable three‐terminal charge trap memory, is introduced. This device utilizes molybdenum disulfide (MoS<jats:sub>2</jats:sub>) as the channel material and a perhydropolysilazane‐based charge trap layer. Notably, the absence of a tunneling layer in the device structure enables dynamic resistive switching, characterized by outstanding endurance and an excellent memory window. Furthermore, by implementing a simple input decay and refresh scheme, a reconfigurable neuromorphic device capable of multiple feature extraction and functioning as an artificial synapse is developed. The device's efficacy is validated through device‐to‐system‐level simulations within a hardware‐based wide RC (WRC) system, resulting in an improved recognition rate in the MNIST hand‐written digit recognition task from 87.6% to 91.0%, a testament to the enhanced computing capacity. This strategic approach advances the development of hardware‐based WRC systems, marking a significant step toward energy‐efficient reservoir computing.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"32 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416811","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir computing (RC) has garnered considerable interest owing to its uncomplicated network structure and minimal training costs. Nevertheless, the computing capacity of RC systems is limited by the material‐dependent physical dynamics of reservoir devices. In this study, an efficient neuromorphic reservoir device with adjustable reservoir states, achieved through the development of an electrically tunable three‐terminal charge trap memory, is introduced. This device utilizes molybdenum disulfide (MoS2) as the channel material and a perhydropolysilazane‐based charge trap layer. Notably, the absence of a tunneling layer in the device structure enables dynamic resistive switching, characterized by outstanding endurance and an excellent memory window. Furthermore, by implementing a simple input decay and refresh scheme, a reconfigurable neuromorphic device capable of multiple feature extraction and functioning as an artificial synapse is developed. The device's efficacy is validated through device‐to‐system‐level simulations within a hardware‐based wide RC (WRC) system, resulting in an improved recognition rate in the MNIST hand‐written digit recognition task from 87.6% to 91.0%, a testament to the enhanced computing capacity. This strategic approach advances the development of hardware‐based WRC systems, marking a significant step toward energy‐efficient reservoir computing.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.