Carbon Dots with Polycyclic Dipeptide Structure Surpass Natural Hydrolase Performance

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengling Zhang, Zeyu Wu, Yan Zhang, Tao Hu, Wenwen Li, Hui Huang, Mingwang Shao, Yang Liu, Xing Fan, Zhenhui Kang
{"title":"Carbon Dots with Polycyclic Dipeptide Structure Surpass Natural Hydrolase Performance","authors":"Mengling Zhang, Zeyu Wu, Yan Zhang, Tao Hu, Wenwen Li, Hui Huang, Mingwang Shao, Yang Liu, Xing Fan, Zhenhui Kang","doi":"10.1002/adfm.202423470","DOIUrl":null,"url":null,"abstract":"Nature enzymes always suffer from high costs, harsh conditions, and instability, while, artificial one offers possibilities for addressing current challenges and plays a significant role in future industrial production. Here, the carbon dots (CDs), with well‐defined polycyclic dipeptide structures, are reported to exhibit superior hydrolase‐like catalytic performance beyond those of natural enzymes. Compared to natural lipase, the obtained CDs not only exhibit superior catalytic activity (2.85 times increase in V<jats:sub>m</jats:sub>) but also have a broader range of substrate concentrations (0–8.0 m<jats:sc>m</jats:sc>) and substrate types (fatty ester, aromatic ester, phosphate ester), along with simpler catalytic conditions and superior stability. The highly efficient catalytic activity of CDs is attributed to the low activation energy of the reaction (E<jats:sub>a</jats:sub>: 13.74 kJ mol<jats:sup>−1</jats:sup>) and strong adsorption to the substrates. The results of theoretical calculations and comparative experiments demonstrate that the adsorption sites of CDs are located on the nitrogen atoms of the polycyclic dipeptide. Furthermore, a membrane integrated with CDs (membrane‐catalyst) is constructed, through which the instantaneous hydrolysis of esters can be realized. This work provides new insight into the enzyme‐like catalytic mechanisms of CDs and offers a new approach to designing enzyme‐like materials with high performance.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"25 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202423470","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nature enzymes always suffer from high costs, harsh conditions, and instability, while, artificial one offers possibilities for addressing current challenges and plays a significant role in future industrial production. Here, the carbon dots (CDs), with well‐defined polycyclic dipeptide structures, are reported to exhibit superior hydrolase‐like catalytic performance beyond those of natural enzymes. Compared to natural lipase, the obtained CDs not only exhibit superior catalytic activity (2.85 times increase in Vm) but also have a broader range of substrate concentrations (0–8.0 mm) and substrate types (fatty ester, aromatic ester, phosphate ester), along with simpler catalytic conditions and superior stability. The highly efficient catalytic activity of CDs is attributed to the low activation energy of the reaction (Ea: 13.74 kJ mol−1) and strong adsorption to the substrates. The results of theoretical calculations and comparative experiments demonstrate that the adsorption sites of CDs are located on the nitrogen atoms of the polycyclic dipeptide. Furthermore, a membrane integrated with CDs (membrane‐catalyst) is constructed, through which the instantaneous hydrolysis of esters can be realized. This work provides new insight into the enzyme‐like catalytic mechanisms of CDs and offers a new approach to designing enzyme‐like materials with high performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信