Mengling Zhang, Zeyu Wu, Yan Zhang, Tao Hu, Wenwen Li, Hui Huang, Mingwang Shao, Yang Liu, Xing Fan, Zhenhui Kang
{"title":"Carbon Dots with Polycyclic Dipeptide Structure Surpass Natural Hydrolase Performance","authors":"Mengling Zhang, Zeyu Wu, Yan Zhang, Tao Hu, Wenwen Li, Hui Huang, Mingwang Shao, Yang Liu, Xing Fan, Zhenhui Kang","doi":"10.1002/adfm.202423470","DOIUrl":null,"url":null,"abstract":"Nature enzymes always suffer from high costs, harsh conditions, and instability, while, artificial one offers possibilities for addressing current challenges and plays a significant role in future industrial production. Here, the carbon dots (CDs), with well‐defined polycyclic dipeptide structures, are reported to exhibit superior hydrolase‐like catalytic performance beyond those of natural enzymes. Compared to natural lipase, the obtained CDs not only exhibit superior catalytic activity (2.85 times increase in V<jats:sub>m</jats:sub>) but also have a broader range of substrate concentrations (0–8.0 m<jats:sc>m</jats:sc>) and substrate types (fatty ester, aromatic ester, phosphate ester), along with simpler catalytic conditions and superior stability. The highly efficient catalytic activity of CDs is attributed to the low activation energy of the reaction (E<jats:sub>a</jats:sub>: 13.74 kJ mol<jats:sup>−1</jats:sup>) and strong adsorption to the substrates. The results of theoretical calculations and comparative experiments demonstrate that the adsorption sites of CDs are located on the nitrogen atoms of the polycyclic dipeptide. Furthermore, a membrane integrated with CDs (membrane‐catalyst) is constructed, through which the instantaneous hydrolysis of esters can be realized. This work provides new insight into the enzyme‐like catalytic mechanisms of CDs and offers a new approach to designing enzyme‐like materials with high performance.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"25 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202423470","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nature enzymes always suffer from high costs, harsh conditions, and instability, while, artificial one offers possibilities for addressing current challenges and plays a significant role in future industrial production. Here, the carbon dots (CDs), with well‐defined polycyclic dipeptide structures, are reported to exhibit superior hydrolase‐like catalytic performance beyond those of natural enzymes. Compared to natural lipase, the obtained CDs not only exhibit superior catalytic activity (2.85 times increase in Vm) but also have a broader range of substrate concentrations (0–8.0 mm) and substrate types (fatty ester, aromatic ester, phosphate ester), along with simpler catalytic conditions and superior stability. The highly efficient catalytic activity of CDs is attributed to the low activation energy of the reaction (Ea: 13.74 kJ mol−1) and strong adsorption to the substrates. The results of theoretical calculations and comparative experiments demonstrate that the adsorption sites of CDs are located on the nitrogen atoms of the polycyclic dipeptide. Furthermore, a membrane integrated with CDs (membrane‐catalyst) is constructed, through which the instantaneous hydrolysis of esters can be realized. This work provides new insight into the enzyme‐like catalytic mechanisms of CDs and offers a new approach to designing enzyme‐like materials with high performance.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.